cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A322440 Number of pairs of integer partitions of n where every part of the first is less than every part of the second.

Original entry on oeis.org

1, 0, 1, 2, 5, 7, 16, 20, 40, 55, 97, 124, 235, 287, 482, 654, 1033, 1318, 2137, 2676, 4157, 5439, 7891, 10144, 15280, 19171, 27336, 35652, 49756, 63150, 89342, 111956, 154400, 197413, 264572, 336082, 456724, 568932, 756065, 959566, 1261803, 1576355, 2078267
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(5) = 16 pairs of integer partitions:
      (51)|(6)
      (42)|(6)
     (411)|(6)
      (33)|(6)
     (321)|(6)
    (3111)|(6)
     (222)|(6)
     (222)|(33)
    (2211)|(6)
    (2211)|(33)
   (21111)|(6)
   (21111)|(33)
  (111111)|(6)
  (111111)|(42)
  (111111)|(33)
  (111111)|(222)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          g(n, i-1) +g(n-i, min(i, n-i)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(g(n-i, min(n-i, i))*b(n, i+1), i=1..n))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 09 2018
  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],Max@@First[#]n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := a[n] = If[n==0, 1, Sum[g[n-i, Min[n-i, i]]*b[n, i+1], {i, 1, n}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n-1} A026820(n, k) * A026794(n, k + 1).

A220504 Triangle read by rows: T(n,k) is the total number of appearances of k as the smallest part in all partitions of n.

Original entry on oeis.org

1, 2, 1, 4, 0, 1, 7, 2, 0, 1, 12, 1, 0, 0, 1, 19, 4, 2, 0, 0, 1, 30, 3, 1, 0, 0, 0, 1, 45, 8, 1, 2, 0, 0, 0, 1, 67, 7, 4, 1, 0, 0, 0, 0, 1, 97, 15, 3, 1, 2, 0, 0, 0, 0, 1, 139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1, 195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1, 272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2013

Keywords

Comments

In other words, T(n,k) is the total number of appearances of k in all partitions of n whose smallest part is k.
The sum of row n equals spt(n), the smallest part partition function (see A092269).
T(n,k) is also the sum of row k in the slice n of tetrahedron A209314.

Examples

			Triangle begins:
    1;
    2,  1;
    4,  0, 1;
    7,  2, 0, 1;
   12,  1, 0, 0, 1;
   19,  4, 2, 0, 0, 1;
   30,  3, 1, 0, 0, 0, 1;
   45,  8, 1, 2, 0, 0, 0, 1;
   67,  7, 4, 1, 0, 0, 0, 0, 1;
   97, 15, 3, 1, 2, 0, 0, 0, 0, 1;
  139, 15, 4, 1, 1, 0, 0, 0, 0, 0, 1;
  195, 27, 8, 4, 1, 2, 0, 0, 0, 0, 0, 1;
  272, 29, 8, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1;
  ...
The partitions of 6 with the smallest part in brackets are
..........................
.                      [6]
..........................
.                  [3]+[3]
..........................
.                   4 +[2]
.              [2]+[2]+[2]
..........................
.                   5 +[1]
.               3 + 2 +[1]
.               4 +[1]+[1]
.           2 + 2 +[1]+[1]
.           3 +[1]+[1]+[1]
.       2 +[1]+[1]+[1]+[1]
.  [1]+[1]+[1]+[1]+[1]+[1]
..........................
There are 19 smallest parts of size 1. Also there are four smallest parts of size 2. Also there are two smallest parts of size 3. There are no smallest part of size 4 or 5. Finally there is only one smallest part of size 6. So row 6 gives 19, 4, 2, 0, 0, 1. The sum of row 6 is 19+4+2+0+0+1 = A092269(6) = 26.
		

Crossrefs

Columns 1-3: A000070, A087787, A174455.
Row sums give A092269.

Programs

  • Maple
    b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0
          else `if`(irem(n, i, 'r')=0, [0$(i-1), r], []); for j from 0
          to n/i do zip((x, y)->x+y, %, [b(n-i*j, i-1)], 0) od; %[] fi
        end:
    T:= n-> b(n, n):
    seq(T(n), n=1..20);  # Alois P. Heinz, Jan 20 2013
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{j, q, r, pc}, If [n == 0 || i<1, 0, {q, r} = QuotientRemainder[n, i]; pc = If[r == 0, Append[Array[0&, i-1], q], {}]; For[j = 0, j <= n/i, j++, pc = Plus @@ PadRight[{pc, b[n-i*j, i-1]}]]; pc]]; T[n_] := b[n, n]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)

A161364 Triangle read by rows, modified version of A161363; row sums = A000041.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 4, 1, 0, 0, 0, 3, 2, 2, 0, 0, 0, 7, 2, 2, 0, 0, 0, 0, 7, 3, 2, 3, 0, 0, 0, 0, 12, 3, 4, 3, 0, 0, 0, 0, 0, 13, 5, 4, 3, 5, 0, 0, 0, 0, 0, 22, 6, 6, 3, 5, 0, 0, 0, 0, 0, 0, 2, 5, 7, 6, 6, 5, 7, 0, 0, 0, 0, 0, 0, 4, 9, 8, 6, 5, 7, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gary W. Adamson, Jun 07 2009

Keywords

Comments

Row sums = A000041, the partition numbers.

Examples

			First few rows of the triangle =
1;
1, 0;
2, 0, 0;
2, 1, 0, 0;
4, 1, 0, 0, 0;
3, 2, 2, 0, 0, 0;
7, 2, 2, 0, 0, 0, 0;
7, 3, 2, 3, 0, 0, 0, 0;
12, 3, 4, 3, 0, 0, 0, 0, 0;
13, 5, 4, 3, 5, 0, 0, 0, 0, 0;
22, 6, 6, 3, 5, 0, 0, 0, 0, 0, 0;
25, 7, 6, 6, 5, 7, 0, 0, 0, 0, 0, 0;
42, 9, 8, 6, 5, 7, 0, 0, 0, 0, 0, 0, 0;
48, 13, 8, 9, 5, 7, 11, 0, 0, 0, 0, 0, 0, 0;
...
		

Crossrefs

Formula

Given triangle A161363, (the inverse of partition triangle A026794); multiply by (-1), delete right border of 1's, and shift down 1 row inserting a "1" at T(0,0); = triangle M. Let Q = an infinite lower triangular matrix with A000041 as the right border and the rest zeros. Triangle A161364 = M * Q.

A027185 Triangular array O by rows: O(n,k) = number of partitions of n into an odd number of parts, the least being k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 6, 1, 0, 0, 0, 0, 1, 7, 2, 0, 0, 0, 0, 0, 1, 12, 2, 1, 0, 0, 0, 0, 0, 1, 14, 4, 1, 0, 0, 0, 0, 0, 0, 1, 22, 4, 2, 0, 0, 0, 0, 0, 0, 0, 1, 27, 6, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 40, 7, 3, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			1,
0, 1,
1, 0, 1,
1, 0, 0, 1,
3, 0, 0, 0, 1,
3, 1, 0, 0, 0, 1,
6, 1, 0, 0, 0, 0, 1,
7, 2, 0, 0, 0, 0, 0, 1,
12, 2, 1, 0, 0, 0, 0, 0, 1,
14, 4, 1, 0, 0, 0, 0, 0, 0, 1,
22, 4, 2, 0, 0, 0, 0, 0, 0, 0, 1,
27, 6, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1,
40, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
		

Crossrefs

Cf. A027186.

Formula

O(n, k) = E(n-k, k)+E(n-k, k+1)+...+E(n-k, n-k), for 2<=2k<=n, E given by A027186.
T(n,k) + A027186(n,k) = A026794(n,k). - R. J. Mathar, Oct 18 2019

A137631 Left border of triangle A137629.

Original entry on oeis.org

1, 2, 4, 7, 11, 18, 26, 39, 55, 79, 106, 150, 196, 267
Offset: 1

Views

Author

Gary W. Adamson, Jan 31 2008

Keywords

Examples

			a(4) = 7 = (3, 1, 0, 1) dot (1, 1, 2, 3), where (3, 1, 0, 1) = row 4 of the partition triangle A026794 and (1, 1, 2, 3) = the first 4 terms of A000041.
		

Crossrefs

Formula

A026794 * A000041 = product of the partition triangle and the partitions of n.

A137640 Row sums of triangle A137639.

Original entry on oeis.org

1, 3, 4, 8, 9, 17, 19, 32, 40, 57, 71, 106, 129, 176
Offset: 1

Views

Author

Gary W. Adamson, Jan 31 2008

Keywords

Examples

			a(4) = 8 = sum of row 4 terms of triangle A137639: (7 + 2 + 0 + 1).
a(4) = 8 = (3, 1, 0, 1) dot (1, 2, 2, 3) = (3 + 2 + 0 + 3); where (3, 1, 0, 1) = row 4 of triangle A026794, the partition triangle and (1, 2, 2, 3) = the first 4 terms of A000005, d(n).
		

Crossrefs

Formula

A026794 * A000005. (A026794 as an infinite lower triangular matrix and d(n) as a vector).

A161375 Row sums of triangle A161363.

Original entry on oeis.org

1, 0, -1, -2, -4, -5, -9, -11, -17, -21, -32, -38, -58, -70, -97, -122, -170, -206, -284, -349, -463, -573, -752, -919, -1199, -1466, -1869, -2289, -2904, -3518, -4432, -5371, -6676, -8072, -9970, -11985, -14739, -17667, -21522, -25747, -31242, -37176, -44905
Offset: 1

Views

Author

Gary W. Adamson, Jun 07 2009

Keywords

Comments

The partition triangle A026794 * [1, 0, -1, -2, -4, -5,...] = [1, 1, 1, 1,...].

Examples

			a(4) = sum of row 4 terms, triangle A161363: (-2, -1, 0, 1).
		

Crossrefs

Formula

Row sums of triangle A161363.

Extensions

a(15)-a(43) from Alois P. Heinz, Jun 05 2023

A340928 Least image of A001222 applied to the prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 4277 are {4,6,15} with images {2,2,2}, so a(4277) = 2.
The prime indices of 8303 are {8,8,9} with images {3,3,2}, so a(8303) = 2.
		

Crossrefs

Positions of 0's are A000079.
Positions of first appearances are A033844.
The version for maximum is A340691.
A003963 multiplies together the prime indices.
A026794 counts partitions by sum and minimum.
A056239 adds up the prime indices.
A061395 selects the greatest prime index.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    Table[If[n==1,0,Min@@PrimeOmega/@PrimePi/@First/@FactorInteger[n]],{n,100}]

A112995 Triangular array T(n,k)=number of partitions of n in which the least part is <=k, for 1<=k<=n, n>=1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 9, 10, 10, 10, 11, 11, 13, 14, 14, 14, 14, 15, 15, 19, 20, 21, 21, 21, 21, 22, 22, 26, 28, 29, 29, 29, 29, 29, 30, 30, 37, 39, 40, 41, 41, 41, 41, 41, 42, 42, 50, 53, 54, 55, 55, 55, 55, 55, 55, 56, 56, 68, 72, 74, 75, 76, 76, 76, 76
Offset: 1

Views

Author

Clark Kimberling, Oct 08 2005

Keywords

Comments

The partition sequence A000041 occurs here as T(n,0) and also essentially as T(n,n).

Examples

			The first five rows:
1
1 2
2 2 3
3 4 4 5
5 6 6 6 7
Row 5 of A026794, namely 5 1 0 0 1, has partial sums 5 6 6 6 7.
		

Crossrefs

Formula

Row n of T consists of the partial sums of row n of the array in A026794.
Previous Showing 41-49 of 49 results.