cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A341437 Numbers k such that k divides Sum_{j=0..k} j^(k-j).

Original entry on oeis.org

1, 2, 6, 7, 9, 42, 46, 431, 1806, 2506, 11318, 16965, 25426, 33146, 33361, 37053, 49365, 99221, 224506, 359703, 436994
Offset: 1

Views

Author

Seiichi Manyama, Feb 11 2021

Keywords

Comments

Numbers k such that k divides A026898(k-1).
a(19) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[Sum[PowerMod[k, n - k, n], {k, 0, n}], n] == 0, Print[n]], {n, 1, 3000}] (* Vaclav Kotesovec, Feb 12 2021 *)
  • PARI
    isok(n) = sum(k=0, n, Mod(k, n)^(n-k))==0;

Formula

0^6 + 1^5 + 2^4 + 3^3 + 4^2 + 5^1 + 6^0 = 66 = 6 * 11. So 6 is a term.

Extensions

a(19) from Vaclav Kotesovec, Feb 14 2021
a(20)-a(21) from Chai Wah Wu, Feb 15 2021

A344433 a(n) = Sum_{k=1..n} mu(k) * k^(n - k).

Original entry on oeis.org

1, 0, -2, -6, -17, -46, -132, -402, -1314, -4613, -17313, -68893, -288556, -1269637, -5907157, -29489299, -160431708, -955478664, -6145884133, -41584238971, -287650358748, -1984825313901, -13377544470631, -86142095523089, -512881404732949, -2634567148684612, -9205461936290915, 17544751152746927
Offset: 1

Views

Author

Seiichi Manyama, May 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[k] * k^(n-k), {k,1,n}]; Array[a, 30] (* Amiram Eldar, May 19 2021 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*k^(n-k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-k*x)))

Formula

G.f.: Sum_{k>=1} mu(k) * x^k / (1 - k*x).

A349881 Expansion of Sum_{k>=0} x^k/(1 - k^4 * x).

Original entry on oeis.org

1, 1, 2, 18, 339, 10915, 663140, 61264436, 8044351557, 1536980041573, 402558463751974, 137204787854813174, 60668198155262809815, 34351266752678243067591, 24185207999807747975188552, 20842786946335533698574605528
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Comments

In general, for t>=1 and s>=0, Sum_{k=0..n} k^(t*(n-k)+s) ~ sqrt(2*Pi) * ((n + s/t)/LambertW(exp(1)*(n + s/t)))^(1/2 + (t*n + s) * (1 - 1/LambertW(exp(1)*(n + s/t)))) / sqrt(t*(1 + LambertW(exp(1)*(n + s/t)))). - Vaclav Kotesovec, Dec 04 2021

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == n - k == 0, 1, k^(4*(n - k))], {k, 0, n}]; Array[a, 16, 0] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    a(n, s=0, t=4) = sum(k=0, n, k^(t*(n-k)+s));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k^4*x)))

Formula

a(n) = Sum_{k=0..n} k^(4*(n-k)).
a(n) ~ sqrt(Pi/2) * (n/LambertW(exp(1)*n))^(1/2 + 4*n - 4*n/LambertW(exp(1)*n)) / sqrt(1 + LambertW(exp(1)*n)). - Vaclav Kotesovec, Dec 04 2021

A349965 a(n) = Sum_{k=0..n} (k * (n-k))^k.

Original entry on oeis.org

1, 1, 2, 7, 47, 513, 8020, 169227, 4637965, 159568981, 6684686230, 332681461871, 19316990453131, 1292074091000105, 98636639620170792, 8528989125071254867, 829516920337723299465, 90124512307642049807293, 10865612430780251465538154
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == 0, 1, (k*(n - k))^k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k*(n-k))^k);

Formula

log(a(n)) ~ n*(2*log(n) - 1 + (1/(2*log(n)) - 1)*log(2*log(n))). - Vaclav Kotesovec, Dec 07 2021

A352946 a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 10, 16, 25, 42, 73, 125, 217, 391, 714, 1305, 2428, 4612, 8830, 17038, 33377, 66216, 132349, 267075, 545329, 1123693, 2333278, 4889751, 10342468, 22043954, 47340802, 102504532, 223654713, 491393646, 1087353601, 2423448817, 5437568233
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^k);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k*x^3)))

Formula

G.f.: Sum_{k>=0} x^k / (1 - k * x^3).
a(n) ~ sqrt(2*Pi/3) * (n/LambertW(exp(1)*n))^(n*(1 - 1/LambertW(exp(1)*n))/3 + 1/2) / sqrt(1 + LambertW(exp(1)*n)). - Vaclav Kotesovec, Apr 14 2022

A179928 Row sums of A179927, the triangle of centered orthotopic numbers.

Original entry on oeis.org

1, 3, 6, 13, 32, 89, 276, 943, 3514, 14159, 61242, 282633, 1384684, 7170701, 39105992, 223867419, 1341434134, 8392364851, 54696456734
Offset: 0

Views

Author

Peter Luschny, Aug 02 2010

Keywords

Comments

a(n)-1 is the sum of the antidiagonal of array A265583 from (n+1,1) to (1,n+1). - Mathew Englander, Apr 11 2021

Crossrefs

Programs

  • Maple
    A179928 := proc(n) local j; add(A179927(n,j),j=0..n) end;
  • Mathematica
    e[0, ] = 1; e[n, x_] := e[n, x] = x (1 - x) D[e[n - 1, x], x] + e[n - 1, x] (1 + (n - 1) x) // Expand;
    h[n_, x_] := e[n, x] (1 + x)/(1 - x)^(n + 1);
    T[n_, k_] := SeriesCoefficient[h[n - k, x], {x, 0, k}];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jul 11 2019 *)

Formula

From Mathew Englander, Apr 11 2021: (Start)
a(n) = 1 + Sum_{i = 1..n} (i+1)*i^(n-i).
a(n) = A026898(n) + A026898(n-1) for n > 0. (End)

A242431 Triangle read by rows: T(n, k) = (k + 1)*T(n-1, k) + Sum_{j=k..n-1} T(n-1, j) for k < n, T(n, n) = 1. T(n, k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 14, 10, 4, 1, 43, 35, 17, 5, 1, 144, 128, 74, 26, 6, 1, 523, 491, 329, 137, 37, 7, 1, 2048, 1984, 1498, 730, 230, 50, 8, 1, 8597, 8469, 7011, 3939, 1439, 359, 65, 9, 1, 38486, 38230, 33856, 21568, 9068, 2588, 530, 82, 10, 1
Offset: 0

Views

Author

Peter Luschny, May 14 2014

Keywords

Examples

			0|    1;
1|    2,    1;
2|    5,    3,    1;
3|   14,   10,    4,   1;
4|   43,   35,   17,   5,   1;
5|  144,  128,   74,  26,   6,  1;
6|  523,  491,  329, 137,  37,  7, 1;
7| 2048, 1984, 1498, 730, 230, 50, 8, 1;
		

Crossrefs

Programs

  • Maple
    T := proc(n, k) option remember; local j;
        if k=n then 1
      elif k>n then 0
      else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
        fi end:
    seq(print(seq(T(n,k), k=0..n)), n=0..7);
  • Sage
    def A242431_rows():
        T = []; n = 0
        while True:
            T.append(1)
            yield T
            for k in (0..n):
                T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
            n += 1
    a = A242431_rows()
    for n in range(8): next(a)

Formula

T(n, 0) = A047970(n).
Sum_{k=0..n} T(n, k) = A112532(n+1).
From Mathew Englander, Feb 25 2021: (Start)
T(n,k) = 1 + Sum_{i = k+1..n} i*(i+1)^(n-i).
T(n,k) = T(n,k+1) + (k+1)*(k+2)^(n-k-1) for 0 <= k < n.
T(n,k) = T(n,k+1) + (k+2)*(T(n-1,k) - T(n-1,k+1)) for 0 <= k <= n-2.
T(n,k) = Sum_{i = 0..n-k} (k+2)^i*A089246(n-k,i).
Sum_{i = k..n} T(i,k) = Sum_{i = 0..n-k} (n+2-i)^i = Sum_{i = 0..n-k} A101494(n-k,i)*(k+2)^i. (End)

A349878 Expansion of Sum_{k>=0} k^3 * x^k/(1 - k * x).

Original entry on oeis.org

0, 1, 9, 44, 178, 689, 2723, 11304, 49772, 232657, 1151781, 6018628, 33087022, 190780001, 1150653679, 7241710656, 47454745496, 323154695841, 2282779990113, 16700904488284, 126356632389834, 987303454928465, 7957133905608283, 66071772829246808
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^(n - k + 3), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2021 *)
  • PARI
    a(n, s=3, t=1) = sum(k=0, n, k^(t*(n-k)+s));
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^3*x^k/(1-k*x))))

Formula

a(n) = Sum_{k=0..n} k^(n-k+3).
a(n) ~ sqrt(2*Pi) * ((n + 3)/LambertW(exp(1)*(n + 3)))^(1/2 + (n + 3)*(1 - 1/LambertW(exp(1)*(n + 3)))) / sqrt(1 + LambertW(exp(1)*(n + 3))). - Vaclav Kotesovec, Dec 04 2021

A349879 Expansion of Sum_{k>=0} k^4 * x^k/(1 - k * x).

Original entry on oeis.org

0, 1, 17, 114, 564, 2507, 10961, 49260, 231928, 1150781, 6017297, 33085294, 190777804, 1150650935, 7241707281, 47454741400, 323154690928, 2282779984281, 16700904481425, 126356632381834, 987303454919204, 7957133905597635, 66071772829234641
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Comments

In general, for s>=1, Sum_{k=0..n} k^(n-k+s) ~ sqrt(2*Pi) * ((n + s)/LambertW(exp(1)*(n + s)))^(1/2 + (n + s)*(1 - 1/LambertW(exp(1)*(n + s)))) / sqrt(1 + LambertW(exp(1)*(n + s))). - Vaclav Kotesovec, Dec 04 2021

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^(n - k + 4), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2021 *)
  • PARI
    a(n, s=4, t=1) = sum(k=0, n, k^(t*(n-k)+s));
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^4*x^k/(1-k*x))))

Formula

a(n) = Sum_{k=0..n} k^(n-k+4).
a(n) ~ sqrt(2*Pi) * ((n + 4)/LambertW(exp(1)*(n + 4)))^(1/2 + (n + 4)*(1 - 1/LambertW(exp(1)*(n + 4)))) / sqrt(1 + LambertW(exp(1)*(n + 4))). - Vaclav Kotesovec, Dec 04 2021

A349969 a(n) = Sum_{k=0..n} (k*n)^(n-k).

Original entry on oeis.org

1, 1, 3, 16, 141, 1871, 34951, 873174, 27951929, 1107415549, 52891809491, 2987861887924, 196828568831365, 14950745148070499, 1296606974501951743, 127238563043551898986, 14012626653816435643633, 1719136634276882827095009, 233448782800118609096218891
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == n == 0, 1, (k*n)^(n - k)], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k*n)^(n-k));

Formula

a(n) = [x^n] Sum_{k>=0} x^k/(1 - n*k * x).
a(n) ~ sqrt(2*Pi/(n*(1 + LambertW(exp(1)*n^2)))) * (n^2/LambertW(exp(1)*n^2))^(n + 1/2 - n/LambertW(exp(1)*n^2)). - Vaclav Kotesovec, Dec 07 2021
Previous Showing 21-30 of 45 results. Next