A341437
Numbers k such that k divides Sum_{j=0..k} j^(k-j).
Original entry on oeis.org
1, 2, 6, 7, 9, 42, 46, 431, 1806, 2506, 11318, 16965, 25426, 33146, 33361, 37053, 49365, 99221, 224506, 359703, 436994
Offset: 1
-
Do[If[Mod[Sum[PowerMod[k, n - k, n], {k, 0, n}], n] == 0, Print[n]], {n, 1, 3000}] (* Vaclav Kotesovec, Feb 12 2021 *)
-
isok(n) = sum(k=0, n, Mod(k, n)^(n-k))==0;
A344433
a(n) = Sum_{k=1..n} mu(k) * k^(n - k).
Original entry on oeis.org
1, 0, -2, -6, -17, -46, -132, -402, -1314, -4613, -17313, -68893, -288556, -1269637, -5907157, -29489299, -160431708, -955478664, -6145884133, -41584238971, -287650358748, -1984825313901, -13377544470631, -86142095523089, -512881404732949, -2634567148684612, -9205461936290915, 17544751152746927
Offset: 1
-
a[n_] := Sum[MoebiusMu[k] * k^(n-k), {k,1,n}]; Array[a, 30] (* Amiram Eldar, May 19 2021 *)
-
a(n) = sum(k=1, n, moebius(k)*k^(n-k));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-k*x)))
A349881
Expansion of Sum_{k>=0} x^k/(1 - k^4 * x).
Original entry on oeis.org
1, 1, 2, 18, 339, 10915, 663140, 61264436, 8044351557, 1536980041573, 402558463751974, 137204787854813174, 60668198155262809815, 34351266752678243067591, 24185207999807747975188552, 20842786946335533698574605528
Offset: 0
-
a[n_] := Sum[If[k == n - k == 0, 1, k^(4*(n - k))], {k, 0, n}]; Array[a, 16, 0] (* Amiram Eldar, Dec 04 2021 *)
-
a(n, s=0, t=4) = sum(k=0, n, k^(t*(n-k)+s));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k^4*x)))
A349965
a(n) = Sum_{k=0..n} (k * (n-k))^k.
Original entry on oeis.org
1, 1, 2, 7, 47, 513, 8020, 169227, 4637965, 159568981, 6684686230, 332681461871, 19316990453131, 1292074091000105, 98636639620170792, 8528989125071254867, 829516920337723299465, 90124512307642049807293, 10865612430780251465538154
Offset: 0
-
a[n_] := Sum[If[k == 0, 1, (k*(n - k))^k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Dec 07 2021 *)
-
a(n) = sum(k=0, n, (k*(n-k))^k);
A352946
a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 6, 10, 16, 25, 42, 73, 125, 217, 391, 714, 1305, 2428, 4612, 8830, 17038, 33377, 66216, 132349, 267075, 545329, 1123693, 2333278, 4889751, 10342468, 22043954, 47340802, 102504532, 223654713, 491393646, 1087353601, 2423448817, 5437568233
Offset: 0
-
a(n) = sum(k=0, n\3, (n-3*k)^k);
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k*x^3)))
A179928
Row sums of A179927, the triangle of centered orthotopic numbers.
Original entry on oeis.org
1, 3, 6, 13, 32, 89, 276, 943, 3514, 14159, 61242, 282633, 1384684, 7170701, 39105992, 223867419, 1341434134, 8392364851, 54696456734
Offset: 0
-
A179928 := proc(n) local j; add(A179927(n,j),j=0..n) end;
-
e[0, ] = 1; e[n, x_] := e[n, x] = x (1 - x) D[e[n - 1, x], x] + e[n - 1, x] (1 + (n - 1) x) // Expand;
h[n_, x_] := e[n, x] (1 + x)/(1 - x)^(n + 1);
T[n_, k_] := SeriesCoefficient[h[n - k, x], {x, 0, k}];
a[n_] := Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jul 11 2019 *)
A242431
Triangle read by rows: T(n, k) = (k + 1)*T(n-1, k) + Sum_{j=k..n-1} T(n-1, j) for k < n, T(n, n) = 1. T(n, k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 14, 10, 4, 1, 43, 35, 17, 5, 1, 144, 128, 74, 26, 6, 1, 523, 491, 329, 137, 37, 7, 1, 2048, 1984, 1498, 730, 230, 50, 8, 1, 8597, 8469, 7011, 3939, 1439, 359, 65, 9, 1, 38486, 38230, 33856, 21568, 9068, 2588, 530, 82, 10, 1
Offset: 0
0| 1;
1| 2, 1;
2| 5, 3, 1;
3| 14, 10, 4, 1;
4| 43, 35, 17, 5, 1;
5| 144, 128, 74, 26, 6, 1;
6| 523, 491, 329, 137, 37, 7, 1;
7| 2048, 1984, 1498, 730, 230, 50, 8, 1;
-
T := proc(n, k) option remember; local j;
if k=n then 1
elif k>n then 0
else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n)
fi end:
seq(print(seq(T(n,k), k=0..n)), n=0..7);
-
def A242431_rows():
T = []; n = 0
while True:
T.append(1)
yield T
for k in (0..n):
T[k] = (k+1)*T[k] + add(T[j] for j in (k..n))
n += 1
a = A242431_rows()
for n in range(8): next(a)
A349878
Expansion of Sum_{k>=0} k^3 * x^k/(1 - k * x).
Original entry on oeis.org
0, 1, 9, 44, 178, 689, 2723, 11304, 49772, 232657, 1151781, 6018628, 33087022, 190780001, 1150653679, 7241710656, 47454745496, 323154695841, 2282779990113, 16700904488284, 126356632389834, 987303454928465, 7957133905608283, 66071772829246808
Offset: 0
-
Table[Sum[k^(n - k + 3), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2021 *)
-
a(n, s=3, t=1) = sum(k=0, n, k^(t*(n-k)+s));
-
my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^3*x^k/(1-k*x))))
A349879
Expansion of Sum_{k>=0} k^4 * x^k/(1 - k * x).
Original entry on oeis.org
0, 1, 17, 114, 564, 2507, 10961, 49260, 231928, 1150781, 6017297, 33085294, 190777804, 1150650935, 7241707281, 47454741400, 323154690928, 2282779984281, 16700904481425, 126356632381834, 987303454919204, 7957133905597635, 66071772829234641
Offset: 0
-
Table[Sum[k^(n - k + 4), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 04 2021 *)
-
a(n, s=4, t=1) = sum(k=0, n, k^(t*(n-k)+s));
-
my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, k^4*x^k/(1-k*x))))
A349969
a(n) = Sum_{k=0..n} (k*n)^(n-k).
Original entry on oeis.org
1, 1, 3, 16, 141, 1871, 34951, 873174, 27951929, 1107415549, 52891809491, 2987861887924, 196828568831365, 14950745148070499, 1296606974501951743, 127238563043551898986, 14012626653816435643633, 1719136634276882827095009, 233448782800118609096218891
Offset: 0
-
a[n_] := Sum[If[k == n == 0, 1, (k*n)^(n - k)], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Dec 07 2021 *)
-
a(n) = sum(k=0, n, (k*n)^(n-k));
Comments