cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A309688 Sum of the odd parts appearing among the second largest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 4, 7, 10, 10, 15, 20, 25, 30, 42, 49, 56, 63, 79, 95, 111, 120, 140, 160, 180, 200, 233, 257, 281, 305, 344, 383, 422, 450, 495, 540, 585, 630, 694, 745, 796, 847, 919, 991, 1063, 1120, 1200, 1280, 1360, 1440, 1545, 1633, 1721, 1809
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      1      1      1      4      7     10     10      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[i * Mod[i, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{2, -3, 4, -3, 2, 1, -4, 6, -8, 6, -4, 1, 2, -3, 4, -3, 2, -1}, {0, 0, 0, 1, 1, 1, 1, 4, 7, 10, 10, 15, 20, 25, 30, 42, 49, 56}, 80]

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} i * (i mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: x^3*(1 + x + x^2 + x^3 + x^4)*(1 - 2*x + 3*x^2 - 4*x^3 + 6*x^4 - 4*x^5 + 3*x^6 - 2*x^7 + x^8) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 3*a(n-4) + 2*a(n-5) + a(n-6) - 4*a(n-7) + 6*a(n-8) - 8*a(n-9) + 6*a(n-10) - 4*a(n-11) + a(n-12) + 2*a(n-13) - 3*a(n-14) + 4*a(n-15) - 3*a(n-16) + 2*a(n-17) - a(n-18) for n>17.
(End)

A026920 Triangular array O by rows: O(n,k) = number of partitions of n into an odd number of parts, the greatest being k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 1, 3, 1, 1, 0, 1, 0, 2, 2, 3, 1, 1, 0, 1, 1, 2, 4, 3, 3, 1, 1, 0, 1, 0, 3, 3, 5, 3, 3, 1, 1, 0, 1, 1, 2, 6, 5, 6, 3, 3, 1, 1, 0, 1, 0, 3, 5, 8, 6, 6, 3, 3, 1, 1, 0, 1, 1, 3, 8, 8, 10, 7, 6, 3, 3, 1, 1, 0, 1, 0, 4, 7, 12, 10, 11, 7, 6, 3, 3, 1, 1, 0, 1
Offset: 1

Views

Author

Keywords

Comments

The reversed rows (see example) stabilize to A027187. [Joerg Arndt, May 12 2013]

Examples

			G.f. = (0)*q^0 +
(1) * q^1
(0* + 1*z^1) * q^2
(1* + 0*z^1 + 1*z^2) * q^3
(0* + 1*z^1 + 0*z^2 + 1*z^3) * q^4
(1* + 1*z^1 + 1*z^2 + 0*z^3 + 1*z^4) * q^5
(0* + 2*z^1 + 1*z^2 + 1*z^3 + 0*z^4 + 1*z^5) * q^6
(1* + 1*z^1 + 3*z^2 + 1*z^3 + 1*z^4 + 0*z^5 + 1*z^6) * q^7
... [_Joerg Arndt_, May 12 2013]
Triangle starts:
01: [1]
02: [0, 1]
03: [1, 0, 1]
04: [0, 1, 0, 1]
05: [1, 1, 1, 0, 1]
06: [0, 2, 1, 1, 0, 1]
07: [1, 1, 3, 1, 1, 0, 1]
08: [0, 2, 2, 3, 1, 1, 0, 1]
09: [1, 2, 4, 3, 3, 1, 1, 0, 1]
10: [0, 3, 3, 5, 3, 3, 1, 1, 0, 1]
11: [1, 2, 6, 5, 6, 3, 3, 1, 1, 0, 1]
12: [0, 3, 5, 8, 6, 6, 3, 3, 1, 1, 0, 1]
13: [1, 3, 8, 8, 10, 7, 6, 3, 3, 1, 1, 0, 1]
14: [0, 4, 7, 12, 10, 11, 7, 6, 3, 3, 1, 1, 0, 1]
15: [1, 3, 11, 13, 16, 12, 12, 7, 6, 3, 3, 1, 1, 0, 1]
16: [0, 4, 9, 18, 17, 18, 13, 12, 7, 6, 3, 3, 1, 1, 0, 1]
17: [1, 4, 13, 19, 25, 21, 20, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
18: [0, 5, 12, 24, 27, 30, 23, 21, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
19: [1, 4, 17, 26, 37, 34, 34, 25, 22, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
... [_Joerg Arndt_, May 12 2013]
		

Crossrefs

O(n, k) = E(n-k, 1)+E(n-k, 2)+...+E(n-k, m), where m=MIN{k, n-k}, n >= 2, E given by A026921.
Columns k=2..6: A026922, A026923, A026924, A026925, A026926.

Programs

  • PARI
    N = 20;  q = 'q + O('q^N);
    gf = sum(n=0,N, q^(2*n+1)/prod(k=1, 2*n+1, 1-'z*q^k) );
    v = Vec(gf);
    { for(n=1, #v, /* print triangle starting with row 1: */
        p = Pol('c0 +'cn*'z^n + v[n],'z);
        p = polrecip(p);
        p = Vec(p);
        p[1] -= 'c0;
        p = vector(#p-1, j, p[j]);
        print(p);
    ); }
    /* Joerg Arndt, May 12 2013 */

Formula

G.f.: sum(n>=0, q^(2*n+1)/prod(k=1..2*n+1, 1-z*q^k) ), setting z=1 gives g.f. for A027193. [Joerg Arndt, May 12 2013]
O(n,k) + A026921(n,k) = A008284(n,k). - R. J. Mathar, Aug 23 2019
Previous Showing 11-12 of 12 results.