A027053
a(n) = T(n,n+2), T given by A027052.
Original entry on oeis.org
1, 4, 9, 18, 35, 66, 123, 228, 421, 776, 1429, 2630, 4839, 8902, 16375, 30120, 55401, 101900, 187425, 344730, 634059, 1166218, 2145011, 3945292, 7256525, 13346832, 24548653, 45152014, 83047503, 152748174, 280947695, 516743376
Offset: 2
-
a:=[1,4,9,18];; for n in [5..30] do a[n]:=2*a[n-1]-a[n-4]; od; a; # G. C. Greubel, Nov 05 2019
-
R:=PowerSeriesRing(Integers(), 32); Coefficients(R!( x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 05 2019
-
seq(coeff(series(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)), x, n+1), x, n), n = 2 ..30); # G. C. Greubel, Nov 05 2019
-
LinearRecurrence[{2,0,0,-1}, {1,4,9,18}, 30] (* G. C. Greubel, Nov 05 2019 *)
-
my(x='x+O('x^32)); Vec(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 05 2019
-
def A027053_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3))).list()
a=A027053_list(32); a[2:] # G. C. Greubel, Nov 05 2019
A027067
a(n) = Sum_{k=n..2*n} T(n,k), T given by A027052.
Original entry on oeis.org
1, 1, 4, 10, 27, 77, 220, 632, 1821, 5257, 15206, 44068, 127951, 372173, 1084382, 3164498, 9248241, 27064057, 79296978, 232597316, 682960523, 2007206245, 5904191878, 17380855190, 51203234981, 150943862857, 445250129556
Offset: 0
-
T:= proc(n, k) option remember;
if k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n, k), k=n..2*n), n=0..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n, k], {k,n,2*n}], {n,0,30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n, k) for k in (n..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019
A027054
a(n) = T(n, n+3), T given by A027052.
Original entry on oeis.org
1, 8, 23, 52, 107, 210, 401, 754, 1405, 2604, 4811, 8872, 16343, 30086, 55365, 101862, 187385, 344688, 634015, 1166172, 2144963, 3945242, 7256473, 13346778, 24548597, 45151956, 83047443, 152748112, 280947631, 516743310
Offset: 3
-
a:=[1,8,23,52,107];; for n in [6..33] do a[n]:=3*a[n-1]-2*a[n-2] -a[n-4]+a[n-5]; od; a; # G. C. Greubel, Nov 05 2019
-
R:=PowerSeriesRing(Integers(), 33); Coefficients(R!( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 05 2019
-
seq(coeff(series(x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)), x, n+1), x, n), n = 3..33); # G. C. Greubel, Nov 05 2019
-
LinearRecurrence[{3,-2,0,-1,1}, {1,8,23,52,107}, 30] (* G. C. Greubel, Nov 05 2019 *)
-
my(x='x+O('x^33)); Vec( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) ) \\ G. C. Greubel, Nov 05 2019
-
def A027053_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) ).list()
a=A027053_list(33); a[3:] # G. C. Greubel, Nov 05 2019
A027055
a(n) = T(n, n+4), T given by A027052.
Original entry on oeis.org
1, 18, 59, 146, 319, 652, 1281, 2456, 4637, 8670, 16111, 29822, 55067, 101528, 187013, 344276, 633561, 1165674, 2144419, 3944650, 7255831, 13346084, 24547849, 45151152, 83046581, 152747190, 280946647, 516742262, 950438067
Offset: 4
-
a:=[1,18,59,146,319,652];; for n in [7..40] do a[n]:=4*a[n-1] -5*a[n-2]+2*a[n-3]-a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Nov 06 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 06 2019
-
seq(coeff(series(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)), x, n+1), x, n), n = 4..40); # G. C. Greubel, Nov 06 2019
-
LinearRecurrence[{4,-5,2,-1,2,-1}, {1,18,59,146,319,652}, 40] (* G. C. Greubel, Nov 06 2019 *)
-
my(x='x+O('x^40)); Vec(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 06 2019
-
def A027053_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3))).list()
a=A027053_list(40); a[4:] # G. C. Greubel, Nov 06 2019
Original entry on oeis.org
0, 2, 4, 8, 18, 42, 102, 256, 658, 1722, 4570, 12264, 33212, 90626, 248892, 687360, 1907506, 5316266, 14873082, 41751944, 117567784, 331979650, 939807344, 2666718976, 7583071868, 21605822594, 61672362872, 176338826728, 505001067346, 1448365610778, 4159725843526, 11962301199744
Offset: 1
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( T(n,2*n-1), n=1..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-1], {n,30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[T(n,2*n-1) for n in (1..30)] # G. C. Greubel, Nov 06 2019
Original entry on oeis.org
1, 2, 4, 9, 21, 51, 128, 329, 861, 2285, 6132, 16606, 45313, 124446, 343680, 953753, 2658133, 7436541, 20875972, 58783892, 165989825, 469903672, 1333359488, 3791535934, 10802911297, 30836181436, 88169413364, 252500533673, 724182805389, 2079862921763, 5981150599872
Offset: 2
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( T(n,2*n-1)/2, n=2..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-1]/2, {n,2,30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[T(n,2*n-1)/2 for n in (2..30)] # G. C. Greubel, Nov 06 2019
Original entry on oeis.org
1, 1, 3, 9, 23, 59, 153, 401, 1063, 2847, 7693, 20947, 57413, 158265, 438467, 1220145, 3408759, 9556815, 26878861, 75815839, 214411865, 607827693, 1726911631, 4916352891, 14022750725, 40066540277, 114666463855, 328662240617
Offset: 1
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( T(n,2*n-2), n=1..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-2], {n,30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[T(n,2*n-2) for n in (1..30)] # G. C. Greubel, Nov 06 2019
Offset changed to 1 and a(1)=1 prepended to sequence by
G. C. Greubel, Nov 06 2019
Original entry on oeis.org
0, 2, 6, 18, 52, 146, 406, 1126, 3124, 8684, 24202, 67640, 189576, 532786, 1501254, 4240550, 12005780, 34063896, 96844082, 275848044, 787104288, 2249633916, 6439678858, 18460717684, 52994100984, 152323413890, 438363476086
Offset: 2
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( T(n,2*n-3), n=2..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-3], {n,2,30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[T(n,2*n-3) for n in (2..30)] # G. C. Greubel, Nov 06 2019
A027060
a(n) = T(n,2n-4), T given by A027052.
Original entry on oeis.org
1, 1, 3, 11, 35, 107, 319, 935, 2713, 7825, 22491, 64523, 184945, 530001, 1519151, 4356471, 12501301, 35901325, 103188123, 296844379, 854701935, 2463133311, 7104685935, 20510632575, 59262772629, 171373598341, 495968905267
Offset: 2
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( T(n,2*n-4), n=2..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-4], {n,2,30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[T(n,2*n-4) for n in (2..30)] # G. C. Greubel, Nov 06 2019
Original entry on oeis.org
0, 2, 6, 20, 66, 210, 652, 1988, 5982, 17830, 52782, 155480, 456364, 1336066, 3904280, 11394244, 33222902, 96812174, 282009512, 821327088, 2391918708, 6966267782, 20291422370, 59116724728, 172271893036, 502157965938
Offset: 3
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( T(n,2*n-5), n=3..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[T[n,2*n-5], {n,3,30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[T(n,2*n-5) for n in (3..30)] # G. C. Greubel, Nov 06 2019
Showing 1-10 of 39 results.
Comments