A027074
a(n) = Sum_{k=0..n-1} T(n,k) * T(n,2n-k), with T given by A027052.
Original entry on oeis.org
1, 1, 4, 22, 93, 389, 1570, 6144, 23629, 89551, 335430, 1244762, 4583293, 16765087, 60980096, 220724896, 795540601, 2856541663, 10222762962, 36475315442, 129796579409, 460757642587, 1632012075912, 5768986242408
Offset: 1
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n,k)*T(n,2*n-k), k=0..n-1), n=1..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n,k]*T[n,2*n-k], {k,0,n-1}], {n, 30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n,k)*T(n,2*n-k) for k in (0..n-1)) for n in (1..30)] # G. C. Greubel, Nov 06 2019
A027075
a(n) = Sum_{k=0..2n} (k+1) * A027052(n, k).
Original entry on oeis.org
1, 4, 17, 58, 199, 682, 2301, 7654, 25145, 81740, 263407, 842720, 2679935, 8479378, 26713555, 83847748, 262335577, 818473148, 2547289679, 7910433568, 24517303535, 75854736178, 234317624167, 722776320072, 2226565995913
Offset: 0
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add((k+1)*T(n,k), k=0..2*n), n=0..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[(k+1)*T[n,k], {k, 0, 2*n}], {n,0,30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum((k+1)*T(n,k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019
A027076
a(n) = Sum_{k=0..2n} (k+1) * A027052(n, 2n-k).
Original entry on oeis.org
1, 4, 13, 38, 111, 326, 961, 2842, 8425, 25020, 74403, 221488, 659895, 1967422, 5869055, 17516540, 52300729, 156214828, 466736979, 1394894672, 4169810935, 12467680862, 37285474803, 111524444760, 333633526937, 998233861836
Offset: 0
G.f. = 1 + 4*x + 13*x^2 + 38*x^3 + 111*x^4 + 326*x^5 + 961*x^6 + 2842*x^7 + ...
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add((k+1)*T(n,2*n-k), k=0..2*n), n=0..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[(k+1)*T[n,2*n-k], {k, 0, 2*n}], {n, 0, 30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum((k+1)*T(n,2*n-k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019
A027077
a(n) = Sum_{k=n+1..2*n} T(n,k), T given by A027052.
Original entry on oeis.org
1, 3, 8, 24, 71, 209, 612, 1784, 5189, 15081, 43838, 127528, 371395, 1082951, 3161866, 9243400, 27055153, 79280601, 232567194, 682905120, 2007104343, 5904004451, 17380510458, 51202600920, 150942696637, 445247984543
Offset: 1
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n,k), k=n+1..2*n), n=1..30); # G. C. Greubel, Nov 06 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k], {k, n+1, 2*n}], {n, 1, 30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n,k) for k in (n+1..2*n)) for n in (1..30)] # G. C. Greubel, Nov 06 2019
A027078
a(n) = Sum_{k=0..n} T(n,k) * T(n,n+k), with T given by A027052.
Original entry on oeis.org
1, 0, 2, 8, 31, 130, 590, 2798, 13541, 66724, 332708, 1673536, 8479367, 43218034, 221383712, 1138976166, 5882112985, 30479772624, 158413903096, 825556260636, 4312814257059, 22580855859166, 118468635595680, 622698941708890
Offset: 0
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n,k)*T(n,n+k), k=0..n), n=0..30); # G. C. Greubel, Nov 07 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, n+k], {k, 0, n}], {n,30}] (* G. C. Greubel, Nov 07 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n,k)*T(n,n+k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 07 2019
A027079
a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A027052.
Original entry on oeis.org
0, 4, 24, 160, 1136, 8420, 64224, 499984, 3952928, 31634724, 255682432, 2083562368, 17097573344, 141143273396, 1171240794072, 9763809318912, 81724975129664, 686539343850164
Offset: 1
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n,k)*T(n,k+1), k=0..2*n-1), n=1..30); # G. C. Greubel, Nov 07 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}], {n,30}] (* G. C. Greubel, Nov 07 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n,k)*T(n,k+1) for k in (0..2*n-1)) for n in (1..30)] # G. C. Greubel, Nov 07 2019
A027080
a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A027052.
Original entry on oeis.org
2, 15, 100, 757, 5902, 46907, 377520, 3065809, 25078650, 206416795, 1708129244, 14202265321, 118585167502, 993915161547, 8358970631568, 70518298143329, 596590060985546, 5060232622624651, 43022268222676124, 366575545244139845, 3129747701356459022, 26771150349554898415
Offset: 2
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n,k)*T(n,k+2), k=0..2*n-2), n=2..30); # G. C. Greubel, Nov 07 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, k+2], {k, 0, 2*n-2}], {n,2,30}] (* G. C. Greubel, Nov 07 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n,k)*T(n,k+2) for k in (0..2*n-2)) for n in (2..30)] # G. C. Greubel, Nov 07 2019
A027081
a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A027052.
Original entry on oeis.org
8, 56, 438, 3574, 29738, 249200, 2094902, 17648718, 148968822, 1259807224, 10674450652, 90618393250, 770728674864, 6567151658496, 56054864624310, 479267092351534, 4104271159315190, 35200977081482376, 302343415930398696, 2600408469332918538, 22394817457275426524
Offset: 3
-
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n,k)*T(n,k+3), k=0..2*n-3), n=3..30); # G. C. Greubel, Nov 07 2019
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, k+3], {k, 0, 2*n-3}], {n,3,30}] (* G. C. Greubel, Nov 07 2019 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n,k)*T(n,k+3) for k in (0..2*n-3)) for n in (3..30)] # G. C. Greubel, Nov 07 2019
Original entry on oeis.org
1, 2, 5, 12, 31, 84, 233, 656, 1865, 5338, 15355, 44342, 128455, 373100, 1086087, 3167634, 9254009, 27074666, 79316491, 232633206, 683026535, 2007327660, 5904415195, 17381265934, 51203990457, 150945252394, 445252685313
Offset: 0
a(2) = 1+0+1+2+1 = 5.
a(3) = 1+0+1+2+3+4+1 = 12.
-
A027052 := proc(n,k) option remember; if k =0 or k = 2*n then 1; elif k = 1 then 0; elif k =2 then 1; else procname(n-1,k-3)+procname(n-1,k-2)+procname(n-1,k-1) ; fi; end:
A160999 := proc(n) add( A027052(n,k),k=0..2*n) ; end: seq(A160999(n),n=0..30) ;
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n, k], {k,0,2*n}], {n,0,30}] (* G. C. Greubel, Nov 06 2019 *)
-
@CachedFunction
def T(n, k):
if (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n, k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019
A027071
Greatest number in row n of array T given by A027052.
Original entry on oeis.org
1, 1, 2, 4, 9, 23, 59, 153, 406, 1126, 3124, 8684, 24202, 67640, 189576, 532786, 1519151, 4356471, 12501301, 35901325, 103188123, 296844379, 854701935, 2463133311, 7104685935, 20510632575, 59262772629, 172271893036, 502157965938
Offset: 0
Comments