cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A027074 a(n) = Sum_{k=0..n-1} T(n,k) * T(n,2n-k), with T given by A027052.

Original entry on oeis.org

1, 1, 4, 22, 93, 389, 1570, 6144, 23629, 89551, 335430, 1244762, 4583293, 16765087, 60980096, 220724896, 795540601, 2856541663, 10222762962, 36475315442, 129796579409, 460757642587, 1632012075912, 5768986242408
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add(T(n,k)*T(n,2*n-k), k=0..n-1), n=1..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n,k]*T[n,2*n-k], {k,0,n-1}], {n, 30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n,k)*T(n,2*n-k) for k in (0..n-1)) for n in (1..30)] # G. C. Greubel, Nov 06 2019

A027075 a(n) = Sum_{k=0..2n} (k+1) * A027052(n, k).

Original entry on oeis.org

1, 4, 17, 58, 199, 682, 2301, 7654, 25145, 81740, 263407, 842720, 2679935, 8479378, 26713555, 83847748, 262335577, 818473148, 2547289679, 7910433568, 24517303535, 75854736178, 234317624167, 722776320072, 2226565995913
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add((k+1)*T(n,k), k=0..2*n), n=0..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[(k+1)*T[n,k], {k, 0, 2*n}], {n,0,30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum((k+1)*T(n,k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019

A027076 a(n) = Sum_{k=0..2n} (k+1) * A027052(n, 2n-k).

Original entry on oeis.org

1, 4, 13, 38, 111, 326, 961, 2842, 8425, 25020, 74403, 221488, 659895, 1967422, 5869055, 17516540, 52300729, 156214828, 466736979, 1394894672, 4169810935, 12467680862, 37285474803, 111524444760, 333633526937, 998233861836
Offset: 0

Views

Author

Keywords

Comments

The terms a(0)..a(25) obey a linear recurrence with polynomial coefficients of degree 7. - Ralf Stephan, May 31 2014

Examples

			G.f. = 1 + 4*x + 13*x^2 + 38*x^3 + 111*x^4 + 326*x^5 + 961*x^6 + 2842*x^7 + ...
		

Crossrefs

Cf. A027052.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add((k+1)*T(n,2*n-k), k=0..2*n), n=0..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[(k+1)*T[n,2*n-k], {k, 0, 2*n}], {n, 0, 30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum((k+1)*T(n,2*n-k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019

Formula

0 = a(n)*(9*n + 9) + a(n+1)*(3*n + 21) + a(n+2)*(13*n - 5) + a(n+3)*(-29*n + 11) + a(n+4)*(-13*n - 121) + a(n+5)*(25*n + 123) + a(n+6)*(-98n - 43) + a(n+7)*(n + 5) for n>=-1. - Michael Somos, May 31 2014
0 = a(n)*(+81*a(n+1) + 189*a(n+2) + ... + 45*a(n+8)) + a(n+1)*(-135*a(n+1) + ...) + ... + a(n+7)*(-7*a(n+7) + a(n+8)) for n>=-1. - Michael Somos, May 31 2014

A027077 a(n) = Sum_{k=n+1..2*n} T(n,k), T given by A027052.

Original entry on oeis.org

1, 3, 8, 24, 71, 209, 612, 1784, 5189, 15081, 43838, 127528, 371395, 1082951, 3161866, 9243400, 27055153, 79280601, 232567194, 682905120, 2007104343, 5904004451, 17380510458, 51202600920, 150942696637, 445247984543
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add(T(n,k), k=n+1..2*n), n=1..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k], {k, n+1, 2*n}], {n, 1, 30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n,k) for k in (n+1..2*n)) for n in (1..30)] # G. C. Greubel, Nov 06 2019

Extensions

Offset changed by G. C. Greubel, Nov 06 2019

A027078 a(n) = Sum_{k=0..n} T(n,k) * T(n,n+k), with T given by A027052.

Original entry on oeis.org

1, 0, 2, 8, 31, 130, 590, 2798, 13541, 66724, 332708, 1673536, 8479367, 43218034, 221383712, 1138976166, 5882112985, 30479772624, 158413903096, 825556260636, 4312814257059, 22580855859166, 118468635595680, 622698941708890
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add(T(n,k)*T(n,n+k), k=0..n), n=0..30); # G. C. Greubel, Nov 07 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, n+k], {k, 0, n}], {n,30}] (* G. C. Greubel, Nov 07 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n,k)*T(n,n+k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 07 2019

A027079 a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A027052.

Original entry on oeis.org

0, 4, 24, 160, 1136, 8420, 64224, 499984, 3952928, 31634724, 255682432, 2083562368, 17097573344, 141143273396, 1171240794072, 9763809318912, 81724975129664, 686539343850164
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add(T(n,k)*T(n,k+1), k=0..2*n-1), n=1..30); # G. C. Greubel, Nov 07 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}], {n,30}] (* G. C. Greubel, Nov 07 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n,k)*T(n,k+1) for k in (0..2*n-1)) for n in (1..30)] # G. C. Greubel, Nov 07 2019

A027080 a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A027052.

Original entry on oeis.org

2, 15, 100, 757, 5902, 46907, 377520, 3065809, 25078650, 206416795, 1708129244, 14202265321, 118585167502, 993915161547, 8358970631568, 70518298143329, 596590060985546, 5060232622624651, 43022268222676124, 366575545244139845, 3129747701356459022, 26771150349554898415
Offset: 2

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add(T(n,k)*T(n,k+2), k=0..2*n-2), n=2..30); # G. C. Greubel, Nov 07 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, k+2], {k, 0, 2*n-2}], {n,2,30}] (* G. C. Greubel, Nov 07 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n,k)*T(n,k+2) for k in (0..2*n-2)) for n in (2..30)] # G. C. Greubel, Nov 07 2019

Extensions

More terms from Sean A. Irvine, Oct 22 2019

A027081 a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A027052.

Original entry on oeis.org

8, 56, 438, 3574, 29738, 249200, 2094902, 17648718, 148968822, 1259807224, 10674450652, 90618393250, 770728674864, 6567151658496, 56054864624310, 479267092351534, 4104271159315190, 35200977081482376, 302343415930398696, 2600408469332918538, 22394817457275426524
Offset: 3

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add(T(n,k)*T(n,k+3), k=0..2*n-3), n=3..30); # G. C. Greubel, Nov 07 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, k+3], {k, 0, 2*n-3}], {n,3,30}] (* G. C. Greubel, Nov 07 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n,k)*T(n,k+3) for k in (0..2*n-3)) for n in (3..30)] # G. C. Greubel, Nov 07 2019

Extensions

More terms from Sean A. Irvine, Oct 22 2019

A160999 Row sums of A027052.

Original entry on oeis.org

1, 2, 5, 12, 31, 84, 233, 656, 1865, 5338, 15355, 44342, 128455, 373100, 1086087, 3167634, 9254009, 27074666, 79316491, 232633206, 683026535, 2007327660, 5904415195, 17381265934, 51203990457, 150945252394, 445252685313
Offset: 0

Views

Author

R. J. Mathar, Jun 01 2009

Keywords

Examples

			a(2) = 1+0+1+2+1 = 5.
a(3) = 1+0+1+2+3+4+1 = 12.
		

Programs

  • Maple
    A027052 := proc(n,k) option remember; if k =0 or k = 2*n then 1; elif k = 1 then 0; elif k =2 then 1; else procname(n-1,k-3)+procname(n-1,k-2)+procname(n-1,k-1) ; fi; end:
    A160999 := proc(n) add( A027052(n,k),k=0..2*n) ; end: seq(A160999(n),n=0..30) ;
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n, k], {k,0,2*n}], {n,0,30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n, k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019

Formula

a(n) = Sum_{k=0..2*n} A027052(n,k).
Conjecture: (-n+2)*a(n) +(6*n-11)*a(n-1) +(-7*n+1)*a(n-2) +2*(-4*n+27)*a(n-3) +(5*n-28)*a(n-4) +(2*n-3)*a(n-5) +3*(n-5)*a(n-6)=0. - R. J. Mathar, May 26 2016

A027071 Greatest number in row n of array T given by A027052.

Original entry on oeis.org

1, 1, 2, 4, 9, 23, 59, 153, 406, 1126, 3124, 8684, 24202, 67640, 189576, 532786, 1519151, 4356471, 12501301, 35901325, 103188123, 296844379, 854701935, 2463133311, 7104685935, 20510632575, 59262772629, 172271893036, 502157965938
Offset: 0

Views

Author

Keywords

Previous Showing 21-30 of 39 results. Next