cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 72 results. Next

A260419 Square array T(n,m) read by antidiagonals, T(n,m) is the number of (m,n)-parking functions.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 5, 16, 11, 1, 1, 5, 16, 27, 16, 1, 1, 7, 25, 125, 81, 42, 1, 1, 7, 49, 125, 256, 378, 64, 1, 1, 9, 49, 243, 1296, 1184, 729, 163, 1, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 1, 11, 100, 729, 2401, 16807, 15625, 27213, 9529, 638, 1
Offset: 1

Views

Author

Michel Marcus, Jul 25 2015

Keywords

Comments

T(n,2) appears to be A027306(n).

Examples

			Table starts (see Table 1 in Aval & Bergeron link):
n/m  1   2    3    4     5
------------------------------
1   |1,  1,   1,   1,    1, ...
2   |1,  3,   3,   5,    5, ...
3   |1,  4,  16,  16,   25, ...
4   |1, 11,  27, 125,  125, ...
5   |1, 16,  81, 256, 1296, ...
6   |...
		

Crossrefs

Cf. A071201.

Formula

T(n,m) = m^(n-1), if m and n are coprime (see Lemma in Aval & Bergeron link).

Extensions

More terms from Alois P. Heinz, Nov 30 2015

A307768 Number of n-step random walks on a line starting from the origin and returning to it at least once.

Original entry on oeis.org

0, 0, 2, 4, 10, 20, 44, 88, 186, 372, 772, 1544, 3172, 6344, 12952, 25904, 52666, 105332, 213524, 427048, 863820, 1727640, 3488872, 6977744, 14073060, 28146120, 56708264, 113416528, 228318856, 456637712, 918624304, 1837248608, 3693886906, 7387773812, 14846262964, 29692525928
Offset: 0

Views

Author

Robert FERREOL, Apr 27 2019

Keywords

Comments

a(n)/2^n tends to 1 as n goes to infinity; this means that on the line any random walk returns sooner or later to its starting point with a probability 1.
a(n) is also the number of heads-or-tails games of length n during which at some point there are as many heads as tails.

Examples

			The a(3)=4 three-step walks returning to 0 are [0, -1, 0, -1], [0, -1, 0, 1], [0, 1, 0, -1], [0, 1, 0, 1].
The a(4)=10 three-step walks returning to 0 are [0, -1, -2, -1, 0], [0, -1, 0, -1, -2], [0, -1, 0, -1, 0], [0, -1, 0, 1, 0], [0, -1, 0, 1, 2], [0, 1, 0, -1, -2], [0, 1, 0, -1, 0], [0, 1, 0, 1, 0], [0, 1, 0, 1, 2], [0, 1, 2, 1, 0].
		

Crossrefs

Programs

  • Maple
    b:=n->piecewise(n mod 2 = 0,binomial(n,n/2),2*binomial(n-1,(n-1)/2)):
    seq(2^n-b(n),n=0..20);
    # second program:
    A307768 := series(exp(2*x) - int((1/x + 2)*BesselI(1,2*x),x) - BesselI(1,2*x), x = 0, 36): seq(n!*coeff(A307768, x, n), n = 0 .. 35); # Mélika Tebni, Jun 19 2024
  • Mathematica
    a[n_] := If[n == 0, 0, 2^n - 2*Binomial[n-1, Floor[(n-1)/2]]];
    Array[a, 36, 0] (* Jean-François Alcover, May 05 2019 *)

Formula

a(n) = 2^n - A063886(n).
a(n+1) = 2*A045621(n) = 2*(2^n - binomial(n,floor(n/2))).
a(2n) = 2^(2n) - binomial(2n,n); a(2n+1) = 2*a(2n).
G.f.: (1-sqrt(1-4*x^2))/(1-2*x). - Alois P. Heinz, May 05 2019
n*(a(n)-2*a(n-1)) - 4*(n-3)*(a(n-2)-2*a(n-3)) = 0. - Robert Israel, May 06 2019
a(2n+2) - 2*a(2n+1) = A284016(n) = 2*Catalan(n). - Robert FERREOL, Aug 26 2019
From Mélika Tebni, Jun 19 2024: (Start)
E.g.f.: exp(2*x) - Integral_{x=-oo..oo} (1/x + 2)*BesselI(1, 2*x) dx - BesselI(1, 2*x).
a(n) = 2*(A027306(n) - A128014(n)). (End)

A316403 Number of multisets of exactly two nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 23, 59, 134, 320, 699, 1599, 3434, 7682, 16246, 35762, 74892, 163032, 338771, 731051, 1510466, 3237206, 6658530, 14189790, 29083988, 61687496, 126076638, 266332390, 543061284, 1143207236, 2326521164, 4882706596, 9920514328, 20764519984, 42130081155
Offset: 2

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Examples

			a(4) = 10: {1,011}, {1,101}, {1,110}, {1,111}, {01,01}, {01,10}, {01,11}, {10,10}, {10,11}, {11,11}.
a(5) = 23: {1,0011}, {1,0101}, {1,0110}, {1,0111}, {1,1001}, {1,1010}, {1,1011}, {1,1100}, {1,1101}, {1,1110}, {1,1111}, {01,011}, {01,101}, {01,110}, {01,111}, {10,011}, {10,101}, {10,110}, {10,111}, {11,011}, {11,101}, {11,110}, {11,111}.
		

Crossrefs

Column k=2 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 3)
        end:
    a:= n-> coeff(b(n$2), x, 2):
    seq(a(n), n=2..33);

Formula

a(n) = [x^n y^2] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316404 Number of multisets of exactly three nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 83, 230, 568, 1451, 3439, 8384, 19390, 45708, 103770, 238855, 534400, 1208485, 2672043, 5959769, 13051586, 28792488, 62551270, 136760659, 295115360, 640444498, 1374092646, 2963283862, 6326402780, 13569867602, 28846140436, 61586022487, 130422459008
Offset: 3

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=3 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 4)
        end:
    a:= n-> coeff(b(n$2), x, 3):
    seq(a(n), n=3..33);

Formula

a(n) = [x^n y^3] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316405 Number of multisets of exactly four nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 270, 738, 1935, 5004, 12580, 31354, 76444, 185305, 441363, 1046837, 2447913, 5705753, 13143961, 30202325, 68719396, 156034994, 351348607, 789783351, 1762658134, 3928209272, 8700183502, 19244947618, 42340195770, 93049476310, 203518456343
Offset: 4

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=4 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 5)
        end:
    a:= n-> coeff(b(n$2), x, 4):
    seq(a(n), n=4..33);

Formula

a(n) = [x^n y^4] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316406 Number of multisets of exactly five nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 798, 2200, 5804, 15275, 39014, 99214, 247065, 612090, 1492837, 3622213, 8682565, 20711303, 48923317, 115048586, 268374750, 623503251, 1438753371, 3307821910, 7560955644, 17225642730, 39047321794, 88249150462, 198572820286, 445610719629
Offset: 5

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=5 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 6)
        end:
    a:= n-> coeff(b(n$2), x, 5):
    seq(a(n), n=5..34);

Formula

a(n) = [x^n y^5] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316407 Number of multisets of exactly six nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 826, 2284, 6185, 16471, 43156, 111446, 284517, 717486, 1793081, 4434929, 10887761, 26495243, 64069055, 153761086, 366992020, 870215947, 2053484109, 4818104922, 11256015936, 26164409278, 60583174348, 139655557194, 320805463602
Offset: 6

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=6 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 7)
        end:
    a:= n-> coeff(b(n$2), x, 6):
    seq(a(n), n=6..34);

Formula

a(n) = [x^n y^6] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316408 Number of multisets of exactly seven nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 826, 2320, 6297, 16989, 44828, 117352, 302429, 773496, 1954845, 4905939, 12195457, 30123762, 73825711, 179891662, 435427632, 1048510795, 2510267189, 5981859208, 14182293004, 33482368279, 78690956088, 184229429914, 429570180998
Offset: 7

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=7 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 8)
        end:
    a:= n-> coeff(b(n$2), x, 7):
    seq(a(n), n=7..35);

Formula

a(n) = [x^n y^7] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316409 Number of multisets of exactly eight nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17133, 45504, 119580, 310416, 798196, 2033289, 5136803, 12878647, 32056022, 79277444, 194822462, 476101571, 1156995495, 2797803485, 6731961588, 16126628466, 38459836055, 91355046531, 216126089962, 509445131238
Offset: 8

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=8 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 9)
        end:
    a:= n-> coeff(b(n$2), x, 8):
    seq(a(n), n=8..36);

Formula

a(n) = [x^n y^8] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

A316410 Number of multisets of exactly nine nonempty binary words with a total of n letters such that no word has a majority of 0's.

Original entry on oeis.org

1, 3, 10, 33, 98, 291, 826, 2320, 6342, 17188, 45684, 120435, 313280, 808581, 2065885, 5241557, 13191343, 32992806, 81964072, 202499115, 497418503, 1215823396, 2956890329, 7159215090, 17256728038, 41428552721, 99060756883, 235997525351, 560191343126
Offset: 9

Views

Author

Alois P. Heinz, Jul 02 2018

Keywords

Crossrefs

Column k=9 of A292506.

Programs

  • Maple
    g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
    b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
           binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 10)
        end:
    a:= n-> coeff(b(n$2), x, 9):
    seq(a(n), n=9..37);

Formula

a(n) = [x^n y^9] 1/Product_{j>=1} (1-y*x^j)^A027306(j).
Previous Showing 61-70 of 72 results. Next