cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A317014 Triangle read by rows: T(0,0) = 1; T(n,k) = 7 * T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 7, 49, 1, 343, 14, 2401, 147, 1, 16807, 1372, 21, 117649, 12005, 294, 1, 823543, 100842, 3430, 28, 5764801, 823543, 36015, 490, 1, 40353607, 6588344, 352947, 6860, 35, 282475249, 51883209, 3294172, 84035, 735, 1, 1977326743, 403536070, 29647548, 941192, 12005, 42
Offset: 0

Views

Author

Zagros Lalo, Jul 19 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013614 ((1+7*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A027466 ((7+x)^n).
The coefficients in the expansion of 1/(1-7x-x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 7.14005494464025913554... ((7+sqrt(53))/2), a metallic mean (see A176439), when n approaches infinity.

Examples

			Triangle begins:
1;
7;
49, 1;
343, 14;
2401, 147, 1;
16807, 1372, 21;
117649, 12005, 294, 1;
823543, 100842, 3430, 28;
5764801, 823543, 36015, 490, 1;
40353607, 6588344, 352947, 6860, 35;
282475249, 51883209, 3294172, 84035, 735, 1;
1977326743, 403536070, 29647548, 941192, 12005, 42;
13841287201, 3107227739, 259416045, 9882516, 168070, 1029, 1;
96889010407, 23727920916, 2219448385, 98825160, 2117682, 19208, 49;
678223072849, 179936733613, 18643366434, 951192165, 24706290, 302526, 1372, 1;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 96.

Crossrefs

Row sums give A054413.
Cf. A000420 (column 0), A027473 (column 1), A027474 (column 2), A140107 (column 3), A139641 (column 4).

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 7 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 7*T(n-1, k)+T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018

A317016 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 7 * T(n-2,k-1) for k = 0..floor(n/2). T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 7, 1, 14, 1, 21, 49, 1, 28, 147, 1, 35, 294, 343, 1, 42, 490, 1372, 1, 49, 735, 3430, 2401, 1, 56, 1029, 6860, 12005, 1, 63, 1372, 12005, 36015, 16807, 1, 70, 1764, 19208, 84035, 100842, 1, 77, 2205, 28812, 168070, 352947, 117649, 1, 84, 2695, 41160, 302526, 941192, 823543
Offset: 0

Views

Author

Zagros Lalo, Jul 19 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013614 ((1+7*x)^n) and along skew diagonals pointing top-left in center-justified triangle given in A027466 ((7+x)^n).
The coefficients in the expansion of 1/(1-x-7*x^2) are given by the sequence generated by the row sums.
The row sums are Generalized Fibonacci numbers (see A015442).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.192582403567252..., when n approaches infinity (see A223140).

Examples

			Triangle begins:
  1;
  1;
  1,  7;
  1, 14;
  1, 21,   49;
  1, 28,  147;
  1, 35,  294,   343;
  1, 42,  490,  1372;
  1, 49,  735,  3430,   2401;
  1, 56, 1029,  6860,  12005;
  1, 63, 1372, 12005,  36015,  16807;
  1, 70, 1764, 19208,  84035, 100842;
  1, 77, 2205, 28812, 168070, 352947, 117649;
  1, 84, 2695, 41160, 302526, 941192, 823543;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pages 70, 96.

Crossrefs

Row sums give A015442.

Programs

  • GAP
    Flat(List([0..13],n->List([0..Int(n/2)],k->7^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 19 2018
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 7 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
    Table[7^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten

Formula

T(n,k) = 7^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).
Previous Showing 11-12 of 12 results.