cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A136526 Coefficients polynomials B(x, n) = ((1 + a + b)*x - c)*B(x, n-1) - a*b*B(x, n-2) with a = 3, b = 2, and c = 0.

Original entry on oeis.org

1, 0, 1, -6, 0, 6, 0, -42, 0, 36, 36, 0, -288, 0, 216, 0, 468, 0, -1944, 0, 1296, -216, 0, 4536, 0, -12960, 0, 7776, 0, -4104, 0, 38880, 0, -85536, 0, 46656, 1296, 0, -51840, 0, 311040, 0, -559872, 0, 279936, 0, 32400, 0, -544320, 0, 2379456, 0, -3639168, 0, 1679616
Offset: 0

Views

Author

Roger L. Bagula, Mar 23 2008

Keywords

Examples

			Triangle begins as:
     1;
     0,     1;
    -6,     0,      6;
     0,   -42,      0,    36;
    36,     0,   -288,     0,    216;
     0,   468,      0, -1944,      0,   1296;
  -216,     0,   4536,     0, -12960,      0,    7776;
     0, -4104,      0, 38880,      0, -85536,       0, 46656;
  1296,     0, -51840,     0, 311040,      0, -559872,     0, 279936;
		

References

  • Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, page 93

Crossrefs

Programs

  • Magma
    f:= func< n,k | k eq 0 select (-1)^Floor(n/2) else (-1)^Floor((n-k)/2)*6^Floor((k-1)/2)*(1/k)*(6*Floor((n-k)/2) +k)*Binomial(Floor((n-k)/2) +k-1, k-1) >;
    A136526:= func< n,k | ((n+k+1) mod 2)*6^Floor(n/2)*f(n,k) >;
    [A136526(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 22 2022
    
  • Mathematica
    (* First program *)
    a= (b+1)/(b-1); c=0; b=2;
    B[x_, n_]:= B[x, n]= If[n<2, x^n, ((1+a+b)*x -c)*B[x, n-1] -a*b*B[x, n-2]];
    Table[CoefficientList[B[x,n], x], {n,0,10}]//Flatten
    (* Second program *)
    B[x_, n_]:= 6^(n/2)*(ChebyshevU[n, Sqrt[3/2]*x] -(5*x/Sqrt[6])*ChebyshevU[n-1, Sqrt[3/2]*x]);
    Table[CoefficientList[B[x, n], x]/6^Floor[n/2], {n,0,16}]//Flatten (* G. C. Greubel, Sep 22 2022 *)
  • SageMath
    def f(n,k):
        if (k==0): return (-1)^(n//2)
        else: return (-1)^((n-k)//2)*6^((k-1)//2)*(1/k)*(6*((n-k)//2) + k)*binomial(((n-k)//2) +k-1, k-1)
    def A136526(n,k): return ((n+k+1)%2)*6^(n//2)*f(n,k)
    flatten([[A136526(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 22 2022

Formula

T(n, k) = coefficients of the polynomials defined by B(x, n) = ((1 + a + b)*x - c)*B(x, n - 1) - a*b*B(x, n - 2) with B(x, 0) = 1, B(x, 1) = x, a = 3, b = 2, and c = 0.
From G. C. Greubel, Sep 22 2022: (Start)
T(n, k) = coefficients of the polynomials defined by B(x, n) = 6^(n/2)*(ChebyshevU(n, sqrt(3/2)*x) - (5*x/sqrt(6))*ChebyshevU(n-1, sqrt(3/2)*x)).
T(n, k) = (1/2)*(1+(-1)^(n+k))*6^floor(n/2)*f(n, k), where f(n, k) = (-1)^floor((n -k)/2)*6^floor((k-1)/2)*(1/k)*(6*floor((n-k)/2) + k)*binomial(floor((n-k)/2) + k -1, k-1), for k >= 1, and (-1)^floor(n/2) for k = 0.
T(n, 0) = (1/2)*(1+(-1)^n)*(-6)^floor(n/2).
T(n, 1) = (1/2)*(1-(-1)^n)*(-6)^floor((n-1)/2)*A016921(floor((n-1)/2)), n >= 1.
T(n, 2) = (1/2)*(1+(-1)^n)*(-1)^(1+Floor((n+1)/2))*6^floor((n+1)/2)*A000567(floor( (n+1)/2)), n >= 2.
T(n, 3) = (1/2)*(1-(-1)^n)*(-6)^floor((n+1)/2)*A002414(floor((n-1)/2)), n >= 3.
T(n, 4) = (3/2)*(1+(-1)^n)*(-6)^floor((n+1)/2)*A002419(floor((n-1)/2)), n >= 4.
T(n, 5) = 18*(1-(-1)^n)*(-6)^floor((n-1)/2)*A051843(floor((n-3)/2)), n >= 5.
T(n, n) = 6^(n-1) + (5/6)*[n=0].
T(n, n-2) = -6*A081106(n-2), n >= 2.
Sum_{k=0..n} T(n, k) = -6*A030192(n-3), n>= 0.
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] - 5*[n=2].
G.f.: (1 - 5*x*y)/(1 - 6*x*y + 6*y^2). (End)

Extensions

Edited by G. C. Greubel, Sep 22 2022

A125235 Triangle with the partial column sums of the octagonal numbers.

Original entry on oeis.org

1, 8, 1, 21, 9, 1, 40, 30, 10, 1, 65, 70, 40, 11, 1, 96, 135, 110, 51, 12, 1, 133, 231, 245, 161, 63, 13, 1, 176, 364, 476, 406, 224, 76, 14, 1, 225, 540, 840, 882, 630, 300, 90, 15, 1, 280, 765, 1380, 1722, 1512, 930, 390, 105, 16, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 24 2006

Keywords

Comments

"Partial column sums" means the octagonal numbers are the 1st column, the 2nd column are the partial sums of the 1st column, the 3rd column are the partial sums of the 2nd, etc.
Row sums are 1, 9, 31, 81, 187, 405, 847 = 7*(2^n-1) - 6*n. - R. J. Mathar, Sep 06 2011

Examples

			First few rows of the triangle:
   1;
   8,   1;
  21,   9,   1;
  40,  30,  10,   1;
  65,  70,  40,  11,   1;
  96, 135, 110,  51,  12,   1;
  ...
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover (1966), p. 189.

Crossrefs

Programs

  • PARI
    t(n, k) = if (n <0, 0, if (k==1, n*(3*n-2), if (k > 1, t(n-1,k-1) + t(n-1,k))));
    tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(t(n, k), ", ");); print(););} \\ Michel Marcus, Mar 04 2014

Formula

T(n,1) = A000567(n).
T(n,k) = T(n-1,k-1) + T(n-1,k), k>1.
T(n,2) = A002414(n-1).
T(n,3) = A002419(n-2).
T(n,4) = A051843(n-4).
T(n,5) = A027810(n-6).

Extensions

More terms from Michel Marcus, Mar 04 2014
Previous Showing 11-12 of 12 results.