cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A118921 Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n having first return to the x-axis at (2k,0) (n,k >= 1). (A Grand Dyck path of semilength n is a path in the half-plane x >= 0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1)).

Original entry on oeis.org

2, 4, 2, 12, 4, 4, 40, 12, 8, 10, 140, 40, 24, 20, 28, 504, 140, 80, 60, 56, 84, 1848, 504, 280, 200, 168, 168, 264, 6864, 1848, 1008, 700, 560, 504, 528, 858, 25740, 6864, 3696, 2520, 1960, 1680, 1584, 1716, 2860, 97240, 25740, 13728, 9240, 7056, 5880, 5280
Offset: 1

Views

Author

Emeric Deutsch, May 06 2006

Keywords

Comments

Row sums are the central binomial coefficients (A000984).
T(n,0) = 2*A028329(n-1).
Sum_{k>=1} k*T(n,k) = 2^(2n-1) (A004171).
For returns to the x-axis arriving from above, see A039599.

Examples

			T(3,2)=4 because we have uudd|ud, uudd|du, dduu|ud and dduu|du (first return to the x-axis shown by | ).
Triangle starts:
    2;
    4,  2;
   12,  4,  4;
   40, 12,  8, 10;
  140, 40, 24, 20, 28;
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->2*binomial(2*k-2,k-1)*binomial(2*n-2*k,n-k)/k: for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form

Formula

T(n,k) = 2*binomial(2k-2,k-1)*binomial(2n-2k,n-k)/k.
G.f. = G(t,z) = (1-sqrt(1-4tz))/sqrt(1-4z).
T(n+1,k+1) = 2*(n-k+1)*A078391(n,k), n >= 0, k >= 0. - Philippe Deléham, Dec 13 2006

A178046 Triangle t(n, m) = 2*binomial(n,m)^2 -A008292(n+1,m+1)^2 read by rows.

Original entry on oeis.org

1, 1, 1, 1, -8, 1, 1, -103, -103, 1, 1, -644, -4284, -644, 1, 1, -3199, -91004, -91004, -3199, 1, 1, -14328, -1418031, -5836256, -1418031, -14328, 1, 1, -60911, -18428967, -243950711, -243950711, -18428967, -60911, 1, 1, -251876
Offset: 0

Views

Author

Roger L. Bagula, May 18 2010

Keywords

Comments

Row sums are A028329(n) - A168562(n+1). - R. J. Mathar, Nov 05 2012

Examples

			1;
1, 1;
1, -8, 1;
1, -103, -103, 1;
1, -644, -4284, -644, 1;
1, -3199, -91004, -91004, -3199, 1;
1, -14328, -1418031, -5836256, -1418031, -14328, 1;
1, -60911, -18428967, -243950711, -243950711, -18428967, -60911, 1;
1, -251876, -213392096, -7785232484, -24395306300, -7785232484, -213392096, -251876, 1;
		

Crossrefs

Programs

  • Mathematica
    << DiscreteMath`Combinatorica`
    t[n_, m_] = 2*Binomial[n, m]^2 - Eulerian[n + 1, m]^2;
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]

A353596 Triangle read by rows, T(n, k) = [x^k] (-2)^n*GegenbauerC(n, -1/2, x).

Original entry on oeis.org

1, 0, 2, 2, 0, -2, 0, -4, 0, 4, -2, 0, 12, 0, -10, 0, 12, 0, -40, 0, 28, 4, 0, -60, 0, 140, 0, -84, 0, -40, 0, 280, 0, -504, 0, 264, -10, 0, 280, 0, -1260, 0, 1848, 0, -858, 0, 140, 0, -1680, 0, 5544, 0, -6864, 0, 2860, 28, 0, -1260, 0, 9240, 0, -24024, 0, 25740, 0, -9724
Offset: 0

Views

Author

Peter Luschny, May 06 2022

Keywords

Examples

			Triangle T(n, k) starts:
[0]   1;
[1]   0,   2;
[2]   2,   0,  -2;
[3]   0,  -4,   0,     4;
[4]  -2,   0,  12,     0,   -10;
[5]   0,  12,   0,   -40,     0,   28;
[6]   4,   0, -60,     0,   140,    0,  -84;
[7]   0, -40,   0,   280,     0, -504,    0,   264;
[8] -10,   0, 280,     0, -1260,    0, 1848,     0, -858;
[9]   0, 140,   0, -1680,     0, 5544,    0, -6864,    0, 2860;
.
Unsigned antidiagonals |T(n+k, n-k)|:
[0]  1;
[1]  2,   2;
[2]  2,   4,    2;
[3]  4,  12,   12,    4;
[4] 10,  40,   60,   40,   10;
[5] 28, 140,  280,  280,  140,  28;
[6] 84, 504, 1260, 1680, 1260, 504, 84;
		

Crossrefs

Diagonals (also divided by 2^k): A002420 (main), A028329 (main-2) (also A000984), A005430 (main-4) (also A002457), A002802 (main-6).

Programs

  • Maple
    g := n -> (-2)^n*GegenbauerC(n, -1/2, x):
    seq(print(seq(coeff(simplify(g(n)), x, k), k = 0..n)), n = 0..9);
  • Mathematica
    s={}; For[n=0,n<11,n++,For[k=0,kDetlef Meya, Oct 03 2023 *)
Previous Showing 21-23 of 23 results.