cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-64 of 64 results.

A055630 Table T(k,m) = k^2 + m read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 4, 2, 2, 9, 5, 3, 3, 16, 10, 6, 4, 4, 25, 17, 11, 7, 5, 5, 36, 26, 18, 12, 8, 6, 6, 49, 37, 27, 19, 13, 9, 7, 7, 64, 50, 38, 28, 20, 14, 10, 8, 8, 81, 65, 51, 39, 29, 21, 15, 11, 9, 9, 100, 82, 66, 52, 40, 30, 22, 16, 12, 10, 10, 121, 101, 83, 67, 53, 41, 31, 23, 17, 13
Offset: 0

Views

Author

Henry Bottomley, Jun 05 2000

Keywords

Examples

			Table begins:
..0...1...4...9..16..25..36..49..64..81.100.121.144...
..1...2...5..10..17..26..37..50..65..82.101.122.145...
..2...3...6..11..18..27..38..51..66..83.102.123.146...
..3...4...7..12..19..28..39..52..67..84.103.124.147...
..4...5...8..13..20..29..40..53..68..85.104.125.148...
..5...6...9..14..21..30..41..54..69..86.105.126.149...
..6...7..10..15..22..31..42..55..70..87.106.127.150...
..7...8..11..16..23..32..43..56..71..88.107.128.151...
..8...9..12..17..24..33..44..57..72..89.108.129.152...
..9..10..13..18..25..34..45..58..73..90.109.130.153...
.10..11..14..19..26..35..46..59..74..91.110.131.154...
... - _Philippe Deléham_, Mar 31 2013
		

Crossrefs

First column is A001477, second column is A000027, first row is A000290, second row is A002522, third row (apart from first term) is A010000, main diagonal is A002378, other diagonals include A028387, A028552, A014209, A002061, A014206, A027688-A027694, each row of A055096 (as upper right triangle) is right hand part of some row of this table

A192032 Square array read by antidiagonals: W(m,n) (m >= 0, n >= 0) is the Wiener index of the graph G(m,n) obtained in the following way: connect by an edge the center of an m-edge star with the center of an n-edge star. The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.

Original entry on oeis.org

1, 4, 4, 9, 10, 9, 16, 18, 18, 16, 25, 28, 29, 28, 25, 36, 40, 42, 42, 40, 36, 49, 54, 57, 58, 57, 54, 49, 64, 70, 74, 76, 76, 74, 70, 64, 81, 88, 93, 96, 97, 96, 93, 88, 81, 100, 108, 114, 118, 120, 120, 118, 114, 108, 100, 121, 130, 137, 142, 145, 146, 145, 142, 137, 130, 121
Offset: 0

Views

Author

Emeric Deutsch, Jun 30 2011

Keywords

Comments

W(n,0) = W(0,n) = A000290(n+1) = (n+1)^2.
W(n,1) = W(1,n) = A028552(n+1) = (n+1)*(n+4).
W(n,2) = W(2,n) = A028881(n+4) = n^2 + 8*n + 9.
W(n,n) = A079273(n+1) = 5*n^2 + 4*n + 1.
W(n,m) = W(m,n) (trivially).

Examples

			W(1,2)=18 because in the graph with vertex set {A,a,B,b,b'} and edge set {AB, Aa, Bb, Bb'} we have 4 pairs of vertices at distance 1 (the edges), 4 pairs at distance 2 (Ab, Ab', Ba, bb') and 2 pairs at distance 3 (ab,ab'); 4*1 + 4*2 + 2*3 = 18.
The square array starts:
   1,  4,  9, 16, 25, ...;
   4, 10, 18, 28, 30, ...;
   9, 18, 29, 42, 57, ...;
  16, 28, 42, 58, 76, ...;
		

Crossrefs

Programs

  • Maple
    W := proc (m, n) options operator, arrow: m^2+n^2+3*m*n+2*m+2*n+1 end proc: for n from 0 to 10 do seq(W(n-i, i), i = 0 .. n) end do; # yields the antidiagonals in triangular form
    W := proc (m, n) options operator, arrow: m^2+n^2+3*m*n+2*m+2*n+1 end proc: for m from 0 to 9 do seq(W(m, n), n = 0 .. 9) end do; # yields the first 10 entries of each of rows 0,1,2,...,9

Formula

W(m,n) = m^2 + n^2 + 3*m*n + 2*m + 2*n + 1.
The Wiener polynomial of the graph G(n,m) is P(m,n;t) = (m+n+1)*t + (1/2)*(m^2 + n^2 + m + n)*t^2 + m*n*t^3.

A257936 Decimal expansion of 11/18.

Original entry on oeis.org

6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Bruno Berselli, May 13 2015

Keywords

Comments

Decimal expansion of Sum_{i>=1} 1/A028552(i).
Also, continued fraction expansion of 5+A001622.

Examples

			.6111111111111111111111111111111111111111111111111111111111111111...
		

Crossrefs

Cf. A010716 (decimal expansion of 5/9 = 10/18), A010722 (decimal expansion of 2/3 = 12/18).

Programs

Formula

Equals A020773 + A142464.
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: (6-5*x)/(1-x).
E.g.f.: exp(x) + 5.
a(n) = 1, n >= 1. (End)

A303609 a(n) = 2*n^3 + 9*n^2 + 9*n.

Original entry on oeis.org

0, 20, 70, 162, 308, 520, 810, 1190, 1672, 2268, 2990, 3850, 4860, 6032, 7378, 8910, 10640, 12580, 14742, 17138, 19780, 22680, 25850, 29302, 33048, 37100, 41470, 46170, 51212, 56608, 62370, 68510, 75040, 81972, 89318, 97090, 105300, 113960, 123082, 132678, 142760
Offset: 0

Views

Author

Vincenzo Librandi, Apr 28 2018

Keywords

Comments

y-values solving the Diophantine equation 4*x^3 + 9*x^2 = y^2 for positive x (which are listed in A028552). The equation is also satisfied by y=2 and x=-2.

Crossrefs

Cf. A014107, A028552 (associated x).

Programs

  • GAP
    List([0..50],n->n*(2*n^2+9*n+9)); # Muniru A Asiru, Apr 29 2018
  • Magma
    [2*n^3+9*n^2+9*n: n in [0..40]];
    
  • Mathematica
    Table[2 n^3 + 9 n^2 + 9 n, {n, 0, 40}] (* or *) CoefficientList[Series[(20 x - 10 x^2 + 2 x^3) / (1 - x)^4, {x, 0, 33}], x]

Formula

G.f.: 2*x*(10 - 5*x + x^2)/(1 - x)^4.
a(n) = n*(2*n^2 + 9*n + 9) = n*A014107(n+3).
From Elmo R. Oliveira, Aug 07 2025: (Start)
E.g.f.: exp(x)*x*(20 + 15*x + 2*x^2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Previous Showing 61-64 of 64 results.