cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A129522 Expansion of unique weight 3 level 11 multiplicative cusp form in powers of q.

Original entry on oeis.org

1, 0, -5, 4, -1, 0, 0, 0, 16, 0, -11, -20, 0, 0, 5, 16, 0, 0, 0, -4, 0, 0, 35, 0, -24, 0, -35, 0, 0, 0, -37, 0, 55, 0, 0, 64, -25, 0, 0, 0, 0, 0, 0, -44, -16, 0, 50, -80, 49, 0, 0, 0, -70, 0, 11, 0, 0, 0, 107, 20, 0, 0, 0, 64, 0, 0, 35, 0, -175, 0, -133, 0, 0
Offset: 1

Views

Author

Michael Somos, Apr 19 2007, Jun 06 2007

Keywords

Comments

This is a member of an infinite family of odd weight level 11 multiplicative modular forms. g_1 = A035179, g_3 = A129522, g_5 = A065099, g_7 = A138661.

Examples

			G.f. = q - 5*q^3 + 4*q^4 - q^5 + 16*q^9 - 11*q^11 - 20*q^12 + 5*q^15 + 16*q^16 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma1(11), 3), 73); A[1] - 5*A[3] + 4*A[4] - A[5]; /* Michael Somos, Mar 26 2015 */
  • Mathematica
    a[ n_] := Module[ {A, B}, B = QPochhammer[ q] QPochhammer[ q^11]; A = B / (q QPochhammer[ q^3] QPochhammer[ q^33]); SeriesCoefficient[ q B^3 (1 + 3 / A) Sqrt[ q (A + 1 + 3 / A)], {q, 0, n}]]; (* Michael Somos, Mar 26 2015 *)
  • PARI
    {a(n) = my(A, B); if( n<1, 0, n--; A = x * O(x^n); B = eta(x + A) * eta(x^11 + A); A = B /( x * eta(x^3 + A) * eta(x^33 + A)); A = B^3 * (1 + 3/A) * sqrt(x * (A + 1 + 3/A)); polcoeff(A, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==11, (-11)^e, kronecker( -11, p)==-1, if( e%2, 0, p^e), for( x=1, sqrtint(4*p\11), if( issquare(4*p - 11*x^2, &y), break)); y = y^2 - p*2; a0=1; a1=y; for( i=2, e, x = y*a1 - p^2*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Jun 06 2007 */
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); A = eta(x + A) * eta(x^11 + A); polcoeff( A^2 / subst(A + x * O(x^(n\2)), x, x^2) * (A^2 + 4*x * subst(A + x * O(x^(n\2)), x, x^2)^2 + 8 * x^3 * subst(A + x * O(x^(n\4)), x, x^4)^2), n))}; /* Michael Somos, Jun 06 2007 */
    

Formula

Expansion of (F(q)^2 + 4*F(q^2)^2 + 8*F(q^4)^2) * F(q)^2 / F(q^2) in powers of q where F(q) := eta(q) * eta(q^11) is the g.f. of A030200.
a(n) is multiplicative with a(11^e) = (-11)^e, a(p^e) = (1+(-1)^e)/2*p^e if p == 2, 6, 7, 8, 10 (mod 11), a(p^e) = a(p)*a(p^(e-1)) - p^2*a(p^(e-2)) if p == 1, 3, 4, 5, 9 (mod 11) where a(p) = y^2 - 2*p and 4*p = y^2 + 11*x^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (11 t)) = 11^(3/2) (t/i)^3 f(t) where q = exp(2 Pi i t).
G.f.: (1/2) * Sum_{u, v in Z} (u*u - 3*v*v) * x^(u*u + u*v + 3*v*v). - Michael Somos, Jun 14 2007
Convolution of A006571 and A028609. - Michael Somos, Aug 14 2012
a(4*n + 2) = 0. - Michael Somos, Nov 11 2015

A028611 Expansion of (theta_3(z)*theta_3(11z) + theta_2(z)*theta_2(11z))^3.

Original entry on oeis.org

1, 6, 12, 20, 54, 84, 120, 192, 204, 346, 312, 414, 380, 672, 480, 880, 726, 1152, 1092, 1440, 1116, 1920, 1332, 1860, 2040, 2106, 1680, 2640, 2496, 3360, 3120, 3108, 3276, 4580, 2880, 4992, 4114, 4500, 3600, 6720, 5304, 6720, 4800, 7392, 5646, 7844, 6360, 7500
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = polcoeff((1 + 2*x*Ser(qfrep([2, 1; 1, 6], n, 1)))^3, n); \\ Jinyuan Wang, Feb 20 2020

Extensions

More terms from Jinyuan Wang, Feb 20 2020

A028612 Expansion of (theta_3(z)*theta_3(11z) + theta_2(z)*theta_2(11z))^4.

Original entry on oeis.org

1, 8, 24, 48, 120, 256, 416, 736, 1112, 1624, 2384, 2792, 3904, 4560, 6080, 6352, 9176, 9296, 13688, 13728, 18352, 19168, 25656, 23632, 32992, 31400, 38800, 39664, 49024, 48400, 61632, 58512, 73368, 80112, 86832, 84768, 108472, 99808, 122784, 122240, 143504, 137200
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    a(n) = polcoeff((1 + 2*x*Ser(qfrep([2, 1; 1, 6], n, 1)))^4, n); \\ Jinyuan Wang, Feb 20 2020

Extensions

More terms from Jinyuan Wang, Feb 20 2020

A028995 Theta series of 10-d 11-modular Craig lattice A_10^(3).

Original entry on oeis.org

1, 0, 0, 110, 330, 462, 1320, 2640, 3960, 7150, 9240, 15840, 20900, 29040, 36960, 53614, 66330, 87120, 104280, 134640, 158532, 203280, 227040, 294030, 327360, 414414, 454080, 563310, 596640, 728640, 798600, 975150, 1025640, 1254110
Offset: 0

Views

Author

Keywords

Formula

A028609(z)^5 - 10*z*A028609(z)^3 * (eta(z)*eta(11z))^2 where A028609(z) = theta_3(z)*theta_3(11z) + theta_2(z)*theta_2(11z). - Corrected by Sean A. Irvine, Feb 27 2020

Extensions

Formula and more terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Nov 22 2001
Previous Showing 11-14 of 14 results.