cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A363846 Number of connected bipartite graphs on 2n nodes with a marked bipartite set of size n.

Original entry on oeis.org

1, 1, 2, 13, 150, 3529, 194203, 29350896, 13668966399, 20662731749804, 103588456044907944, 1744955436868541083098, 99859125842603176324368784, 19611138475504485904873456937288, 13340730475029359536419515017040194246, 31706419735128559894860278029259121951682970, 265351742295121848168241791689670791068746978140331
Offset: 0

Views

Author

Max Alekseyev, Jun 24 2023

Keywords

Comments

Also, number of n X n binary matrices up to permutations of rows and columns, representing the reduced adjacency matrices of connected bipartite graphs (cf. A002724).

Crossrefs

Diagonal of the rectangular array described in A363845.

Formula

a(n) = A363845(2n, n).

A327913 Array read by antidiagonals: T(n,m) is the number of distinct unordered row and column sums of n X m binary matrices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 22, 34, 22, 6, 1, 1, 7, 34, 76, 76, 34, 7, 1, 1, 8, 50, 152, 221, 152, 50, 8, 1, 1, 9, 70, 280, 557, 557, 280, 70, 9, 1, 1, 10, 95, 482, 1264, 1736, 1264, 482, 95, 10, 1, 1, 11, 125, 787, 2630, 4766, 4766, 2630, 787, 125, 11, 1
Offset: 0

Views

Author

Andrew Howroyd, Oct 30 2019

Keywords

Comments

Only matrices in which both row and columns sums are weakly increasing need to be considered. If order is also considered then the number of possibilities is given by A328887(n, m).

Examples

			Array begins:
=============================================
n\m | 0 1  2   3    4     5     6      7
----+----------------------------------------
  0 | 1 1  1   1    1     1     1      1 ...
  1 | 1 2  3   4    5     6     7      8 ...
  2 | 1 3  7  13   22    34    50     70 ...
  3 | 1 4 13  34   76   152   280    482 ...
  4 | 1 5 22  76  221   557  1264   2630 ...
  5 | 1 6 34 152  557  1736  4766  11812 ...
  6 | 1 7 50 280 1264  4766 15584  45356 ...
  7 | 1 8 70 482 2630 11812 45356 153228 ...
  ...
T(2,2) = 7. The following 7 matrices each have different row/column sums.
  [0 0]  [0 0]  [0 1]  [0 0]  [0 1]  [0 1]  [1 1]
  [0 0]  [0 1]  [1 0]  [1 1]  [0 1]  [1 1]  [1 1]
		

Crossrefs

Main diagonal is A029894.
Cf. A028657 (nonequivalent binary n X m matrices).

Programs

  • PARI
    T(n,m)={local(Cache=Map());
      my(F(b, c, t, w)=my(hk=Vecsmall([b, c, t, w]), z);
         if(!mapisdefined(Cache, hk, &z),
           z = if(w&&c, sum(i=0, b, sum(j=ceil((t+i)/w), min(t+i, c), self()(i, j, t+i-j, w-1))), !t);
         mapput(Cache, hk, z)); z);
       F(n, n, 0, m)
    }
    
  • Python
    # After PARI implementation.
    from functools import cache
    @cache
    def F(b, c, t, w):
        if w == 0:
            return 1 if t == 0 else 0
        return sum(
            sum(
                F(i, j, t + i - j, w - 1)
                for j in range((t + i - 1) // w, min(t + i, c) + 1)
            )
            for i in range(b + 1)
        )
    A327913 = lambda n, m: F(n, n, 0, m)
    for n in range(10):
        print([A327913(n, m) for m in range(0, 8)]) # Peter Luschny, Apr 09 2021

A363845 Triangle read by rows: T(n,k) = number of connected n-node graphs with k nodes in distinguished bipartite block, k = 0..n.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 6, 13, 6, 1, 0, 0, 1, 9, 34, 34, 9, 1, 0, 0, 1, 12, 76, 150, 76, 12, 1, 0, 0, 1, 16, 155, 558, 558, 155, 16, 1, 0, 0, 1, 20, 290, 1824, 3529, 1824, 290, 20, 1, 0, 0, 1, 25, 510, 5375, 19687, 19687, 5375, 510, 25, 1, 0, 0, 1, 30, 853, 14549, 98726, 194203, 98726, 14549, 853, 30, 1, 0
Offset: 0

Views

Author

Max Alekseyev, Jun 24 2023

Keywords

Comments

Also, rectangular array read by antidiagonals: A(m,n) = number of distinct m X n binary matrices M up to permutations of rows or columns such that M represents the reduced adjacency matrix of a connected bipartite graph.

Examples

			n=0: 1,
n=1: 1, 1,
n=2: 0, 1, 0,
n=3: 0, 1, 1, 0,
n=4: 0, 1, 2, 1, 0,
n=5: 0, 1, 4, 4, 1, 0,
n=6: 0, 1, 6, 13, 6, 1, 0,
n=7: 0, 1, 9, 34, 34, 9, 1, 0,
n=8: 0, 1, 12, 76, 150, 76, 12, 1, 0,
n=9: 0, 1, 16, 155, 558, 558, 155, 16, 1, 0,
...
		

Crossrefs

Inverse bivariate Euler transform of A028657.
Previous Showing 31-33 of 33 results.