cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A257786 Numbers n such that the square root of the sum of the digits times the sum of the digits of n in some power equal n.

Original entry on oeis.org

0, 1, 27, 376, 13131, 234595324075, 54377519037479592374299, 8326623359858152426050700, 1513868951125582592290131113769528
Offset: 1

Views

Author

Pieter Post, May 08 2015

Keywords

Comments

It appears that this sequence is finite.

Examples

			376 = sqrt(3+7+6)*(3^2+7^2+6^2).
13131 = sqrt(1+3+1+3+1)*(1^7+3^7+1^7+3^7+1^7).
		

Crossrefs

Programs

  • Python
    def moda(n,a):
        kk = 0
        while n > 0:
            kk= kk+(n%10)**a
            n =int(n//10)
        return kk
    def sod(n):
        kk = 0
        while n > 0:
            k= kk+(n%10)
            n =int(n//10)
        return kk
    for a in range (1, 10):
        for c in range (1, 10**8):
            if c**2==sod(c)*moda(c,a)**2:
                print (a,c, sod(c),moda(c,a))

Extensions

a(6) from Giovanni Resta, May 09 2015
a(7)-a(9) from Chai Wah Wu, Nov 29 2015

A331203 Numbers k such that k/(digsum(k)) is an integer cube.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 72, 243, 320, 486, 512, 640, 704, 832, 960, 1000, 1088, 1125, 2000, 2401, 3000, 3430, 4000, 4116, 4802, 5000, 5145, 5831, 6000, 6174, 6517, 6860, 7000, 7546, 8000, 8575, 8918, 9000, 9216, 9947, 19683, 35152, 35937, 41743, 43940, 46137
Offset: 1

Views

Author

K. D. Bajpai, Jan 12 2020

Keywords

Comments

If m belongs to the sequence, then 1000*m also belongs to the sequence. - Rémy Sigrist, Jan 12 2020

Examples

			a(11) = 243: 243/(2 + 4 + 3) = 27 = 3^3.
a(12) = 320: 320/(3 + 2 + 0) = 64 = 4^3.
		

Crossrefs

Programs

  • Magma
    [n : n in[1 .. 1000] | IsIntegral((n/(&+Intseq(n)))^(1/3))];
    
  • Mathematica
    Select[Range[100000], IntegerQ[CubeRoot[#/Total[IntegerDigits[#]]]] &]
  • PARI
    is(n) = my (k=n/sumdigits(n)); type(k)==type(42) && ispower(k,3) \\ Rémy Sigrist, Jan 12 2020
Previous Showing 21-22 of 22 results.