cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A281792 Primes of the form x^2 + p^4 where x > 0 and p is prime.

Original entry on oeis.org

17, 41, 97, 137, 181, 241, 277, 337, 457, 641, 661, 757, 769, 821, 857, 881, 977, 1109, 1201, 1237, 1301, 1409, 1697, 2017, 2069, 2389, 2417, 2437, 2617, 2657, 2741, 2801, 3041, 3217, 3301, 3329, 3541, 3557, 3697, 3761, 3989, 4001, 4177, 4241, 4337, 4517, 4721, 5557, 5641, 5857, 6101, 6257, 6481, 6577
Offset: 1

Views

Author

Robert Israel, Jan 30 2017

Keywords

Comments

Heath-Brown and Li prove an asymptotic formula for the number of terms <= x, in particular showing that the sequence is infinite.

Examples

			17 = 1^2 + 2^4
41 = 5^2 + 2^4
97 = 9^2 + 2^4
137 = 11^2 + 2^4
181 = 10^2 + 3^4
		

Crossrefs

Subsequence of A028916.

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    A:= select(isprime, {seq(seq(x^2+y^4, x=1..floor(sqrt(N-y^4))),
    y=select(isprime, [$1..floor(N^(1/4))]))}):
    sort(convert(A,list)); # Robert Israel, Jan 30 2017
  • Mathematica
    nn = 10000;
    Select[Table[x^2+y^4, {y, Select[Range[nn^(1/4)], PrimeQ]}, {x, Sqrt[nn-y^4 ]}] // Flatten, PrimeQ] // Union (* Jean-François Alcover, Sep 18 2018, after Robert Israel *)
  • PARI
    list(lim)=if(lim<17, return([])); my(v=List(),p4,t); forstep(a=1,sqrtint(-16+lim\=1),2, if(isprime(t=a^2+16), listput(v,t))); forprime(p=3,sqrtnint(lim-4,4), p4=p^4; forstep(a=2,sqrtint(lim-p4),2, if(isprime(t=p4+a^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 13 2017

Formula

Heath-Brown and Li prove that there are c*x^(3/4)/log^2 x terms up to x, where c = 4*nu*J = 4.79946121442200811438003177..., nu = A199401, and J = A225119. - Charles R Greathouse IV, Aug 21 2017

A291206 Semi-octavan primes: primes of the form x^4 + y^8.

Original entry on oeis.org

2, 17, 257, 337, 881, 1297, 2657, 6577, 10657, 14897, 16561, 28817, 65537, 65617, 66161, 80177, 83777, 149057, 160001, 166561, 260017, 280097, 331777, 391921, 394721, 411361, 463537, 596977, 614657, 621217, 847601, 1055137, 1336337, 1342897, 1682017, 1763137
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 1^4 + 1^8 = 2.
a(2) = 2^4 + 1^8 = 17.
a(3) = 1^4 + 2^8 = 257.
a(4) = 3^4 + 2^8 = 337.
		

Crossrefs

Subsequence of A002645 and hence of A028916. A006686 is a subsequence.

Programs

  • Mathematica
    Take[Select[Flatten[Table[x^4+y^8,{x,40},{y,40}]],PrimeQ]//Union,40] (* Harvey P. Dale, May 01 2025 *)
  • PARI
    list(lim)=my(v=List([2]),x4,t); for(x=1, sqrtnint(lim\=1,4), x4=x^4; forstep(y=x%2+1, sqrtnint(lim-x4,8), 2, if(isprime(t=x4+y^8), listput(v, t)))); Set(v)

A349900 Primes of the form x^2 + (y^2+1)^2.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 89, 101, 109, 149, 173, 181, 197, 229, 257, 269, 281, 293, 349, 353, 389, 401, 433, 461, 509, 541, 577, 601, 613, 677, 701, 733, 757, 773, 797, 809, 829, 941, 1049, 1061, 1093, 1117, 1181, 1229, 1297, 1301
Offset: 1

Views

Author

Keywords

Comments

Merikoski proved that there are infinitely many primes of this form, and that the order of growth of the sequence up to x is x^(3/4)/log x. (His method did not provide enough Type II information to prove that there is a C such that there are ~ C*x^(3/4)/log x.)

Crossrefs

Subsequence of A002144.

Programs

  • PARI
    list(lim)=my(v=List()); lim\=1; for(y=0,sqrtint(sqrtint(lim-1)-1), my(t=(y^2+1)^2); forstep(x=2-y%2,sqrtint(lim-t),2, my(p=x^2+t); if(isprime(p), listput(v,p)))); Set(v)
    
  • PARI
    is(n)=if(n<5 || !isprime(n), return(0)); for(y=0,sqrtint(sqrtint(n-1)-1), if(isprime(n-(y^2+1)^2), return(1))); 0

Formula

a(n) ≍ (n log n)^(4/3).

A350687 Primes of the form x^2 + (y^3 + z^3)^2 with x,y,z > 0.

Original entry on oeis.org

5, 13, 29, 53, 97, 173, 181, 229, 257, 277, 281, 293, 337, 617, 733, 757, 809, 881, 953, 1009, 1093, 1097, 1217, 1229, 1237, 1289, 1373, 1409, 1481, 1549, 1709, 1777, 1801, 1873, 1901, 2017, 2029, 2153, 2213, 2281, 2381, 2521, 2633
Offset: 1

Views

Author

Keywords

Comments

Merikoski proved that there are infinitely many primes of this form.

Crossrefs

Subsequence of A002144.

Programs

  • PARI
    listA003325(lim)=my(v=List()); lim\=1; for(x=1, sqrtnint(lim-1, 3), my(x3=x^3); for(y=1, min(sqrtnint(lim-x3, 3), x), listput(v, x3+y^3))); Set(v)
    list(lim)=lim\=1; my(v=List(),u=apply(sqr, listA003325(sqrtint(lim-1)))); for(x=1,sqrtint(lim-1), my(x2=x^2); for(i=1,#u, my(t=x2+u[i]); if(t>lim, break); if(isprime(t), listput(v,t)))); Set(v)

A212287 Primes of the form m*p^2 + 1, where p is prime and m <= p^2.

Original entry on oeis.org

5, 13, 17, 19, 37, 73, 101, 151, 197, 251, 401, 491, 601, 677, 727, 883, 1373, 1453, 1471, 1667, 2029, 2179, 2663, 3389, 3469, 3631, 3719, 4057, 4357, 4733, 5477, 6359, 6761, 7019, 8093, 8713, 8837, 9127, 9439, 9803, 9923, 10093, 10141, 10831, 10891, 11617, 11831, 12101, 12343
Offset: 1

Views

Author

Keywords

Comments

Not known to be infinite, but see the Matomäki link.

Examples

			13 is a member since 13 = 3 * 2^2 + 1 with 3 <= 2^2 and 3 is prime.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List(),t);lim=lim\1-.5;forprime(p=2,sqrt(lim), for(a=1,min(lim\p^2,p^2),if(isprime(t=a*p^2+1),listput(v,t))));vecsort(Vec(v),,8)

A344174 Number of primes p of the form x^4 + y^2 with y + 1 prime such that p is smaller than prime(n) and also a quadratic nonresidue modulo prime(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 3, 1, 2, 2, 3, 2, 1, 2, 2, 2, 1, 3, 1, 3, 4, 4, 4, 3, 4, 2, 4, 3, 1, 3, 5, 4, 5, 3, 3, 3, 3, 3, 5, 4, 2, 4, 2, 3, 3, 3, 3, 5, 4, 5, 4, 8, 3, 4, 4, 2, 6, 5, 4, 6, 5, 8, 3, 4, 3, 5, 3, 3, 6, 4, 6, 4, 4, 4, 3, 5, 4, 7, 6, 3, 6, 5, 4, 7, 4, 5, 2, 4, 6, 2, 4, 6, 7
Offset: 1

Views

Author

Zhi-Wei Sun, May 10 2021

Keywords

Comments

In 1998 J. Friedlander and H. Iwaniec proved that there are infinitely many primes of the form x^4 + y^2 with x and y integers.
Conjecture: (i) a(n) > 0 for all n > 1. In other words, for each odd prime p, there is a prime q < p of the form x^4 + y^2 with y + 1 prime such that q is a quadratic nonresidue modulo p.
(ii) For any odd prime p not among 3, 5, 13, 37, 277, there is a prime q < p of the form x^4 + y^2 with y + 1 prime such that q is a quadratic residue modulo p.
Part (i) of the conjecture verified for all odd primes p < 2*10^9.
We even conjecture further that for any prime p > 5 there is a prime q < p of the form x^4 + y^2 with y + 1 prime such that q is a primitive root modulo p.
See also A344173 for a similar conjecture.

Examples

			a(2) = 1, and the prime 1^4 + (2-1)^2 = 2 is a quadratic nonresidue modulo prime(2) = 3.
a(4) = 1, and the prime 1^4 + (3-1)^2 = 5 is a quadratic nonresidue modulo prime(4) = 7.
a(24) = 1, and the prime 1^4 + (7-1)^2 = 37 is a quadratic nonresidue modulo prime(24) = 89.
a(36) = 1, and the prime 1^4 + (11-1)^2 = 101 is a quadratic nonresidue modulo prime(36) = 151.
a(204) = 5, and the primes 3^4 + (11-1)^2 = 181, 3^4 + (17-1)^2 = 337, 5^4 + (5-1)^2 = 641, 5^4 + (17-1)^2 = 881 and 5^4 + (23-1)^2 = 1109 are all quadratic nonresidues modulo prime(204) = 1249.
		

Crossrefs

Programs

  • Mathematica
    tab={0};Do[p:=p=Prime[n];tt={};Do[If[PrimeQ[b+1]&&PrimeQ[a^4+b^2]&&JacobiSymbol[a^4+b^2,p]==-1,tt=Append[tt,a^4+b^2]],{a,1,(p-1)^(1/4)},{b,1,(p-1-a^4)^(1/2)}];tab=Append[tab,Length[Union[tt]]],{n,2,100}];Print[tab]

A346809 Primes of the form x^2 + y^8.

Original entry on oeis.org

2, 5, 17, 37, 101, 197, 257, 281, 337, 401, 577, 617, 677, 881, 1097, 1217, 1297, 1481, 1601, 1777, 2281, 2657, 2857, 2917, 3137, 4357, 4481, 5297, 5477, 5881, 6577, 6661, 6961, 7057, 7237, 7481, 7717, 8101, 8161, 8537, 8677, 8837, 9281, 9697, 10457, 10657, 12037
Offset: 1

Views

Author

Michel Marcus, Aug 05 2021

Keywords

Comments

Merikoski proves that this sequence is infinite.

Crossrefs

Cf. A002496 (a subsequence), A028916.

Programs

  • PARI
    lista(lim)=my(v=List([2]), t); for(a=1, sqrtint(lim), forstep(b=a%2+1, sqrtnint(lim-a^2, 8), 2, t=a^2+b^8; if(isprime(t), listput(v, t)))); vecsort(Vec(v), , 8); \\ after A028916
Previous Showing 31-37 of 37 results.