cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A294178 a(2n) = 2*n + 1, a(2n+1) = 6*n + 3.

Original entry on oeis.org

1, 3, 3, 9, 5, 15, 7, 21, 9, 27, 11, 33, 13, 39, 15, 45, 17, 51, 19, 57, 21, 63, 23, 69, 25, 75, 27, 81, 29, 87, 31, 93, 33, 99, 35, 105, 37, 111, 39, 117, 41, 123, 43, 129, 45, 135, 47, 141, 49, 147, 51, 153
Offset: 0

Views

Author

Paul Curtz, Jun 28 2018

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,2,0,-1},{1,3,3,9},100] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    Vec((1 + 3*x)*(1 + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^40)) \\ Colin Barker, Jun 29 2018

Formula

a(n) = 2*a(n-2) - a(n-4).
a(n) = A289296(n+1) - A289296(n).
G.f.: (1 + 3*x)*(1 + x^2) / ((1 - x)^2*(1 + x)^2). - Colin Barker, Jun 29 2018

A329482 Interleave 1 - n + 3*n^2, 1 + 3*n*(1+n) for n >= 0.

Original entry on oeis.org

1, 1, 3, 7, 11, 19, 25, 37, 45, 61, 71, 91, 103, 127, 141, 169, 185, 217, 235, 271, 291, 331, 353, 397, 421, 469, 495, 547, 575, 631, 661, 721, 753, 817, 851, 919, 955, 1027, 1065, 1141, 1181, 1261
Offset: 0

Views

Author

Paul Curtz, Nov 14 2019

Keywords

Comments

a(n+1) - 2*a(n) = -1, 1, 1, -3, -3, -13, -13, -29, -29, ...
Hexagonal spiral for A000265:
.
17--35---9--37
/
33 17---9--19---5
/ / \
1 1 3---7---1 21
/ / / \ \
31 15 5 1---1 9 11
\ \ \ / / /
15 7 1---3 5 23
\ \ / /
29 13---3--11 3
\ /
7--27--13--25
.
The two sequences are perpendicular.
a(n+1) - a(n) = 0, 2, 4, 4, 8, 6, 12, ... = 2*A029578(n+2).
A003215 is a bisection of 1, 1, 13, 7, 49, 19, 109, 37, ... .

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {1, 1, 3, 7, 11}, 42] (* Amiram Eldar, Nov 23 2019 *)
    Module[{nn=20,a,b},a=Table[1-n+3 n^2,{n,0,nn}];b=Table[1+3n(1+n),{n,0,nn}];Riffle[a,b]] (* Harvey P. Dale, Apr 30 2023 *)
  • PARI
    Vec((1 + 4*x^3 + x^4) / ((1 - x)^3*(1 + x)^2) + O(x^40)) \\ Colin Barker, Nov 15 2019

Formula

From Colin Barker, Nov 14 2019: (Start)
G.f.: (1 + 4*x^3 + x^4) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4.
a(n) = (5 + 3*(-1)^n - 2*(1 + (-1)^n)*n + 6*n^2) / 8.
(End)
E.g.f.: (1/8)*exp(-x)*(3 + 2*x + exp(2*x)*(5 + 4*x + 6*x^2)). - Stefano Spezia, Nov 14 2019 after Colin Barker
a(-n) = 1, 1, 5, 7, 15, 19, ... = interleave 1 + n + 3*n^2, 1 + 3*n*(1+n), both in the spiral.
Previous Showing 21-22 of 22 results.