cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 49 results. Next

A246096 Paradigm shift sequence for (4,2) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 84, 96, 112, 128, 144, 160, 180, 200, 225, 250, 275, 300, 336, 384, 448, 512, 576, 640, 720, 800, 900, 1000, 1125, 1250, 1375, 1536, 1792, 2048, 2304, 2560, 2880, 3200, 3600, 4000, 4500, 5000, 5625, 6250, 7168, 8192, 9216, 10240, 11520, 12800, 14400, 16000, 18000, 20000, 22500, 25000
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=4 steps), or implement the current bundled action (which requires q=2 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 4.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=2: A029744, A029747, A246080, A246084, A246088, A246092, A246096, A246100.
Paradigm shift sequences with p=4: A193456, A246096, A246097, A246098, A246099.

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
Recursive: a(n) = 4*a(n-12) for all n >= 67.

A246097 Paradigm shift sequence for (4,3) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 81, 90, 99, 108, 120, 132, 144, 160, 176, 192, 208, 224, 240, 260, 280, 300, 325, 360, 396, 432, 480, 528, 576, 640, 704, 768, 832, 896, 960, 1040, 1120, 1200, 1300, 1440, 1584, 1728, 1920, 2112, 2304, 2560, 2816, 3072, 3328, 3584, 3840, 4160, 4480, 4800, 5200, 5760, 6336, 6912, 7680, 8448, 9216, 10240, 11264, 12288, 13312, 14336, 15360, 16640, 17920, 19200, 20800, 23040
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=4 steps), or implement the current bundled action (which requires q=3 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 4.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=3: A029747, A029750, A246077, A246081, A246085, A246089, A246093, A246097, A246101.
Paradigm shift sequences with p=4: A193456, A246096, A246097, A246098, A246099.

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
Recursive: a(n) = 4*a(n-16) for all n >= 52.

A246100 Paradigm shift sequence for (5,2) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 96, 112, 128, 144, 160, 180, 200, 225, 250, 275, 300, 330, 360, 396, 448, 512, 576, 640, 720, 800, 900, 1000, 1125, 1250, 1375, 1500, 1650, 1800, 2048, 2304, 2560, 2880, 3200, 3600, 4000, 4500, 5000, 5625, 6250, 6875, 7500, 8250, 9216, 10240, 11520, 12800, 14400, 16000, 18000, 20000, 22500, 25000, 28125, 31250, 34375, 37500, 41250, 46080, 51200, 57600, 64000, 72000, 80000, 90000, 100000, 112500, 125000, 140625, 156250
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=5 steps), or implement the current bundled action (which requires q=2 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 5.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=2: A029744, A029747, A246080, A246084, A246088, A246092, A246096, A246100.
Paradigm shift sequences with p=5: A193457, A246100, A246101, A246102, A246103.

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
Recursive: a(n) = 5*a(n-15) for all n >= 75.

A246101 Paradigm shift sequence for (5,3) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 99, 108, 120, 132, 144, 160, 176, 192, 208, 224, 240, 260, 280, 300, 325, 350, 375, 400, 432, 480, 528, 576, 640, 704, 768, 832, 896, 960, 1040, 1120, 1200, 1300, 1400, 1500, 1625, 1750, 1920
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p = 5 steps), or implement the current bundled action (which requires q = 3 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q) = R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 4.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=3: A029747, A029750, A246077, A246081, A246085, A246089, A246093, A246097, A246101.
Paradigm shift sequences with p=5: A193457, A246100, A246101, A246102, A246103.

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
Recursive: a(n) = 4*a(n-17) for all n >= 75.

A246088 Paradigm shift sequence for (2,2) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 54, 63, 72, 84, 96, 112, 128, 144, 162, 189, 216, 252, 288, 336, 384, 448, 512, 576, 648, 756, 864, 1008, 1152, 1344, 1536, 1792, 2048, 2304, 2592, 3024, 3456, 4032, 4608, 5376, 6144, 7168, 8192, 9216, 10368, 12096, 13824, 16128, 18432, 21504, 24576, 28672, 32768, 36864, 41472
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=2 steps), or implement the current bundled action (which requires q=2 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 4.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=2: A029744, A029747, A246080, A246084, A246088, A246092, A246096, A246100.
Paradigm shift sequences with p=2: A193286, A246088, A246089, A246090, A246091.

Programs

  • PARI
    Vec(x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +7*x^10 +4*x^11 +3*x^12 +2*x^13 +x^14 +x^20 +6*x^21 +3*x^22 +2*x^29 +9*x^30) / ((1 -2*x^5) * (1 +2*x^5)) + O(x^100)) \\ Colin Barker, Nov 19 2016

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 4*a(n-10) for all n >= 32.
G.f.: x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +7*x^10 +4*x^11 +3*x^12 +2*x^13 +x^14 +x^20 +6*x^21 +3*x^22 +2*x^29 +9*x^30) / ((1 -2*x^5) * (1 +2*x^5)). - Colin Barker, Nov 19 2016

A324109 Numbers n such that A324108(n) = A324054(n-1).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 58, 59, 61, 62, 64, 67, 68, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 92, 94, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108, 109, 112, 113, 116, 118, 121
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that A324054(n-1) is equal to A324108(n), which is a multiplicative function with A324108(p^e) = A324054((p^e)-1).
Prime powers (A000961) is a subsequence by definition.
Also A070776 is a subsequence. This follows because for every n of the form 2^i * p^j (where p is an odd prime, and i >= 0, j >= 0), we have A324108(2^i * p^j) = A324054(2^i - 1)*A324054(p^j - 1) = sigma(A005940(2^i)) * sigma(A005940(p^j)). Because A005940(1) = 1, and A005940(2n) = 2*A005940(n), the powers of two are among the fixed points of A005940 (cf. A029747), thus the left half of product is sigma(2^i), while on the other hand, we know that A005940(p^j) is odd (because A005940 also preserves parity), and thus the whole product is equal to sigma(2^i * A005940(p^j)) = sigma(A005940(2^i * p^j)) = A324054((2^i * p^j)-1).
See subsequence A324111 for less regular solutions.

Crossrefs

Union of A070776 and A324111.
Cf. A000961 (a subsequence), A029747, A324054, A324107, A324108, A324110 (complement).

Programs

  • PARI
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    A324108(n) = { my(f=factor(n)); prod(i=1, #f~, A324054((f[i,1]^f[i,2])-1)); };
    isA324109(n) = (A324054(n-1)==A324108(n));
    for(n=1,121,if(isA324109(n), print1(n,", ")));

A364560 Numbers k for which A156552(k) < k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 27, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 55, 60, 63, 64, 70, 72, 75, 77, 80, 81, 84, 90, 91, 96, 98, 99, 100, 105, 108, 110, 120, 121, 125, 126, 128, 135, 140, 143, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 180, 182, 187, 189, 192, 195, 196
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Numbers k such that A005941(k) <= k.
Sequence A005940(A364542(.)) sorted into ascending order.
If k is a term, then also 2*k is present in this sequence, and vice versa.

Crossrefs

Positions of nonpositive terms in A364559.
Cf. A005941, A156552, A364542, A364562 (complement).
Subsequences: A029747, A364550, A364561 (odd terms).

Programs

  • PARI
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    isA364560(n) = (A156552(n) < n);

A161992 Numbers which squared are a sum of 3 distinct nonzero squares.

Original entry on oeis.org

7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Keywords

Comments

Square roots of squares in A004432. - R. J. Mathar, Sep 22 2009

Examples

			7^2 = 2^2 + 3^2 + 6^2. 9^2 = 1^2 + 4^2 + 8^2. 11^2 = 2^2 + 6^2 + 9^2. 15^2 = 2^2 + 5^2 + 14^2.
		

Crossrefs

Programs

  • Maple
    isA004432 := proc(n) local x,y,z2 ; for x from 1 do if x^2 > n then break; fi; for y from 1 to x-1 do z2 := n-x^2-y^2 ; if z2 < y^2 and z2 > 0 then if issqr(z2) then RETURN(true) ; fi; fi; od: od: false ; end:
    isA161992 := proc(n) isA004432(n^2) ; end:
    for n from 1 do if isA161992(n) then printf("%d\n",n) ; fi; od: # R. J. Mathar, Sep 22 2009
  • Mathematica
    lst={};Do[Do[Do[a=(x^2+y^2+z^2)^(1/2);If[a==IntegerPart[a],AppendTo[lst, a]],{z,y+1,2*5!}],{y,x+1,2*5!}],{x,5!}];lst;q=Take[Union[%],150]
  • PARI
    is(n) = n>>=valuation(n, 2); n > 5 \\ David A. Corneth, Sep 18 2020

Extensions

Definition rephrased by R. J. Mathar, Sep 22 2009

A364542 Numbers k for which A005940(k) >= k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Sequence A005941(A364560(.)) sorted into ascending order.
A029747 is included as a subsequence, because it gives the known fixed points of map n -> A005940(n).
Differs from A343107 for the first time at a(22) = 25, which term is not present in A343107. On the other hand, 35 is the first term of A343107 that is not present in this sequence.

Crossrefs

Positions of nonnegative terms in A364499.
Complement of A364540.
Cf. A005940, A005941, A029747 (subsequence), A343107 (not a subsequence), A364560.

Programs

  • Mathematica
    nn = 95; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Select[Range[nn], a[#] >= # &] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364542(n) = (A005940(n)>=n);

A364559 a(n) = A005941(n) - n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 6, 0, 20, 4, -4, 0, 48, -4, 110, 0, -2, 12, 234, 0, -12, 40, -12, 8, 484, -8, 994, 0, 2, 96, -14, -8, 2012, 220, 28, 0, 4056, -4, 8150, 24, -22, 468, 16338, 0, -24, -24, 80, 80, 32716, -24, -18, 16, 202, 968, 65478, -16, 131012, 1988, -24, 0, 4, 4, 262078, 192, 446, -28, 524218, -16
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Examples

			a(528581) = -4 as A005941(528581) = 528577 = 528581-4. Notably, 528581 = 17^2 * 31 * 59, with divisors [1, 17, 31, 59, 289, 527, 1003, 1829, 8959, 17051, 31093, 528581]. Applying A364557 to these divisors gives [1, 64, 1024, 65536, 128, 1024, 65536, 65536, 2048, 131072, 65536, 131072], while applying Euler totient phi (A000010) to them gives [1, 16, 30, 58, 272, 480, 928, 1740, 8160, 15776, 27840, 473280], their differences being [0, 48, 994, 65478, -144, 544, 64608, 63796, -6112, 115296, 37696, -342208], whose sum is -4.
		

Crossrefs

Cf. A005941, A364499, A364557, A364558 (Möbius transform).
Cf. A029747 (known positions of 0's), A364560 (of terms <= 0), A364562 (of terms > 0), A364576.
Cf. also A364288.

Programs

  • PARI
    A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552)
    A364559(n) = (A005941(n)-n);
    
  • Python
    from sympy import factorint, primepi
    def A364559(n): return sum(1<Chai Wah Wu, Jul 29 2023

Formula

a(n) = -A364499(A005941(n)).
a(n) = Sum_{d|n} A364558(d).
Previous Showing 21-30 of 49 results. Next