cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A125033 Number of labeled nodes in generation n of a rooted tree where a node with label k has k child nodes with distinct labels, such that each child node is assigned the least unused label in the path that leads back to the root node with label '1'.

Original entry on oeis.org

1, 1, 2, 7, 36, 248, 2157, 22761, 283220, 4068411, 66367834, 1213504295, 24606397802
Offset: 0

Views

Author

Paul D. Hanna and R. J. Mathar, Nov 17 2006

Keywords

Comments

The minimum label in generation n is n+1 and the maximum label is n*(n+1)/2 + 1.
Compare to trees A029768, A007889, which seem somewhat similar; A029768 has the additional constraint that the labels must be increasing.

Examples

			Labels for the initial nodes of the tree for generations 0..4:
gen 0: [1];
gen 1: (1)->[2];
gen 2: (2)->[3,4];
gen 3: (3)->[4,5,6], (4)->[3,5,6,7];
gen 4: (4)->[5,6,7,8], (5)->[4,6,7,8,9], (6)->[4,5,7,8,9,10],
(3)->[5,6,7], (5)->[3,6,7,8,9], (6)->[3,5,7,8,9,10],
(7)->[3,5,6,8,9,10,11];
		

Programs

  • Maple
    gen := proc(parents,maxgen,ocounts,lvl)
    local thislbl,lbl,childlbl,counts,npar;
    counts := ocounts;
    counts[lvl] := counts[lvl]+1;
    if nops(parents) < maxgen then
    thislbl := op(-1,parents);
    childlbl := 1;
    for lbl from 1 to thislbl do
    while ( childlbl in parents ) or ( childlbl = thislbl ) do
    childlbl := childlbl+1;
    od;
    npar := [op(parents),childlbl];
    if nops(counts) < lvl+1 then
    counts := [op(counts),0];
    fi;
    counts := gen(npar,maxgen,counts,lvl+1);
    childlbl := childlbl+1;
    od;
    fi;
    if lvl <= maxgen -4 then
    print(counts);
    fi;
    RETURN(counts);
    end:
    maxgen := 8;
    parents := [1,2];
    n := [1,0];
    gen(parents,maxgen,n,2);
    print(%) ; # R. J. Mathar, Nov 17 2006)
    The following Maple10 code is from Alec Mihailovs: # (start)
    f:=proc(n::integer[4],A::Array(datatype=integer[4]),
    B::Array(datatype=integer[4]))::integer[4]; local c::integer[4],
    i::integer[4],len::integer[4],m::integer[4]; c,len,m:=0,3,3;
    while len>1 do if len=n then c:=c+1;m:=A[len];B[m]:=0;len:=len-1;
    B[A[len]]:=B[A[len]]+1 elif B[A[len]]<=A[len] then for i from m+1
    do if B[i]=0 then break fi od; len:=len+1;A[len]:=i;B[i]:=1;m:=2
    else m:=A[len];B[m]:=0;len:=len-1;B[A[len]]:=B[A[len]]+1 fi od; c end:
    cf:=Compiler:-Compile(f):
    F:=proc(n::posint) local A,B;
    if n<3 then 1 elif n=3 then 2 else
    A:=Array([$1..3,0$(n-3)],datatype=integer[4]);
    B:=Array([1$3,0$((n-2)*(n+1)/2)],datatype=integer[4]);
    cf(n,A,B) fi end:
    seq(F(n),n=1..12); # (end)

Extensions

Terms a(6)-a(10) from R. J. Mathar, Nov 17 2006
a(11) and a(12) from Alec Mihailovs (alec(AT)mihailovs.com), Nov 19 2006

A264436 Triangle read by rows, inverse Bell transform of the complementary Bell numbers (A000587); T(n,k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 14, 15, 6, 1, 0, 89, 100, 45, 10, 1, 0, 716, 834, 405, 105, 15, 1, 0, 6967, 8351, 4284, 1225, 210, 21, 1, 0, 79524, 97596, 52220, 16009, 3080, 378, 28, 1, 0, 1041541, 1303956, 721674, 233268, 48699, 6804, 630, 36, 1
Offset: 0

Views

Author

Peter Luschny, Dec 01 2015

Keywords

Examples

			Triangle starts:
1,
0,     1,
0,     1,     1,
0,     3,     3,     1,
0,    14,    15,     6,     1,
0,    89,   100,    45,    10,    1,
0,   716,   834,   405,   105,   15,   1,
0,  6967,  8351,  4284,  1225,  210,  21,  1,
0, 79524, 97596, 52220, 16009, 3080, 378, 28, 1
		

Crossrefs

Programs

  • Sage
    # uses[bell_transform from A264428, inverse_bell_transform from A264429]
    def A264436_matrix(dim):
        uno = [1]*dim
        complementary_bell_numbers = [sum((-1)^n*b for (n, b) in enumerate (bell_transform(n, uno))) for n in (0..dim)]
        return inverse_bell_transform(dim, complementary_bell_numbers)
    A264436_matrix(9)

Formula

Row sums are A029768(n-1) for n>=1.
T(n,1) = A007549(n) for n>=1.

A272055 Decimal expansion of -1/(e^2 Ei(-1)), an increasing rooted tree enumeration constant associated with the Euler-Gompertz constant, where Ei is the exponential integral.

Original entry on oeis.org

6, 1, 6, 8, 8, 7, 8, 4, 8, 2, 8, 0, 7, 2, 7, 0, 7, 1, 4, 4, 4, 9, 3, 8, 3, 4, 5, 6, 6, 2, 2, 8, 5, 4, 9, 3, 5, 2, 4, 9, 0, 0, 5, 6, 9, 3, 3, 1, 6, 8, 8, 1, 7, 8, 6, 5, 6, 6, 1, 0, 3, 3, 2, 3, 1, 9, 1, 4, 3, 7, 2, 4, 2, 5, 1, 5, 4, 7, 6, 7, 2, 7, 3, 0, 3, 3, 9, 8, 2, 5, 6, 0, 3, 1, 4, 9, 4, 8, 3, 4, 5, 1, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 19 2016

Keywords

Examples

			0.61688784828072707144493834566228549352490056933168817865661...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 303.

Crossrefs

Programs

  • Mathematica
    RealDigits[-1/(E^2*ExpIntegralEi[-1]), 10, 103][[1]]
  • PARI
    default(realprecision, 100); 1/(exp(2)*eint1(1)) \\ G. C. Greubel, Sep 07 2018

Formula

Equals 1 / (e * A073003).
Also equals -1 / (e^2 * (gamma - Sum_{n>=1} (-1)^(n-1)/(n*n!))), where gamma is the Euler-Mascheroni constant A001620.
Previous Showing 11-13 of 13 results.