cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A134178 Expansion of chi(x) * chi(-x^2)^2 * chi(-x^3) * chi(-x^4) * chi(x^6)^2 * chi(-x^12) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -2, -2, 0, 1, 2, 0, 0, -1, -4, 0, 1, 0, 6, 2, 0, 1, -8, 0, 0, 0, 12, 0, -1, -1, -18, -4, 0, -1, 24, 0, 0, 2, -32, 0, 0, 1, 44, 6, 0, -2, -58, 0, 0, -1, 76, 0, 1, 2, -100, -8, 0, 1, 128, 0, 0, -3, -164, 0, 0, -1, 210, 12, 0, 4, -264, 0, 0, 2, 332, 0, -1, -5, -416, -18, 0, -2, 516, 0, 0, 5, -640, 0, -1, 2, 790, 24
Offset: 0

Views

Author

Michael Somos, Oct 11 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - 2*x^2 - 2*x^3 + x^5 + 2*x^6 - x^9 - 4*x^10 + x^12 + 6*x^14 + ...
G.f. = q^-3 + q^-1 - 2*q - 2*q^3 + q^7 + 2*q^9 - q^15 - 4*q^17 + q^21 + 6*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^2, x^4]^2 QPochhammer[ x^3, x^6] QPochhammer[ x^4, x^8] QPochhammer[-x^6, x^12]^2 QPochhammer[ x^12, x^24], {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^12, x^24] QPochhammer[ x^24, x^48] + x QPochhammer[ -x^4, x^8] QPochhammer[ x^8, x^16] - 2 x^2 QPochhammer[ x^16] / QPochhammer[ -x^4] - 2 x^3 QPochhammer[ x^48] / QPochhammer[ -x^12], {x, 0, n}]; (* Michael Somos, Oct 25 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A) * eta(x^12 + A)^5 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 * eta(x^8 + A) * eta(x^24 + A)^3), n))};

Formula

Euler transform of period 24 sequence [ 1, -3, 0, -1, 1, -1, 1, 0, 0, -3, 1, -4, 1, -3, 0, 0, 1, -1, 1, -1, 0, -3, 1, 0, ...].
a(12*n + 4) = a(12*n + 7) = a(12*n + 8) = a(12*n + 11) = 0.
a(4*n + 1) = a(12*n) = A029838(n). a(4*n + 2) = a(12*n + 3) = -2 * A083365(n).

A208589 Expansion of phi(x) / psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 1, -2, 0, 0, -1, 4, 0, 0, 0, -6, 0, 0, 1, 8, 0, 0, 0, -12, 0, 0, -1, 18, 0, 0, -1, -24, 0, 0, 2, 32, 0, 0, 1, -44, 0, 0, -2, 58, 0, 0, -1, -76, 0, 0, 2, 100, 0, 0, 1, -128, 0, 0, -3, 164, 0, 0, -1, -210, 0, 0, 4, 264, 0, 0, 2, -332, 0, 0, -5, 416
Offset: 0

Views

Author

Michael Somos, Feb 29 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^4 - 2*x^5 - x^8 + 4*x^9 - 6*x^13 + x^16 + 8*x^17 - 12*x^21 + ...
G.f. = 1/q + 2*q + q^7 - 2*q^9 - q^15 + 4*q^17 - 6*q^25 + q^31 + 8*q^33 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 q^(1/2) EllipticTheta[ 3, 0, q] / EllipticTheta[ 2, 0, q^2], {q, 0, n}]; (* Michael Somos, Jul 05 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A) * eta(x^8 + A)^2), n))};

Formula

Expansion of q^(1/2) * eta(q^2)^5 / (eta(q)^2 * eta(q^4) * eta(q^8)^2) in powers of q.
Given g.f. A(x), then B(q) = (A(q^2) / q)^2 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v^2 - (v - 4) * (u - 4)^2.
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^3 - v) * (v^3 + u) - 3*u*v * (2*(u^2 + v^2) - 11). - Michael Somos, Jul 05 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A208850. - Michael Somos, Jul 05 2014
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A029838(n). a(4*n + 1) = 2 * A083365(n).
Convolution square is A131125. Convolution inverse is A210063. - Michael Somos, Jul 05 2014

A296067 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^(2*j-1))/(1 + x^(2*j)))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, -1, 0, 1, 3, -1, 0, 0, 1, 4, 0, -2, 1, 0, 1, 5, 2, -5, 3, 0, 0, 1, 6, 5, -8, 3, 2, -1, 0, 1, 7, 9, -10, -1, 9, -4, -1, 0, 1, 8, 14, -10, -10, 20, -7, -4, 2, 0, 1, 9, 20, -7, -24, 31, -2, -15, 5, 1, 0, 1, 10, 27, 0, -42, 36, 20, -40, 9, 8, -2, 0, 1, 11, 35, 12, -62, 28, 65, -75, 3, 27, -8, -1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k - 3)*x^2 + (1/6)*k*(k^2 - 9*k + 8)*x^3 + (1/24)*k*(k^3 - 18*k^2 + 59*k - 18)*x^4 + (1/120)*k*(k^4 - 30*k^3 + 215*k^2 - 330*k + 144)*x^5 + ...
Square array begins:
1,  1,  1,  1,   1,   1,  ...
0,  1,  2,  3,   4,   5,  ...
0, -1, -1,  0,   2,   5,  ...
0,  0, -2, -5,  -8, -10,  ...
0,  1,  3,  3,  -1, -10,  ...
0,  0,  2,  9,  20,  31,  ...
		

Crossrefs

Columns k=0..8 give A000007, A029838, A029839, A029840, A029841, A029842, A029843, A029844, A029845 (with offset 0).
Main diagonal gives A296043.
Cf. A296068.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i - 1))/(1 + x^(2 i)))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[(x^(1/8) EllipticTheta[2, 0, x^(1/2)]/EllipticTheta[2, 0, x])^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^(2*j-1))/(1 + x^(2*j)))^k.
G.f. of column k: (x^(1/8)*theta_2(sqrt(x))/theta_2(x))^k, where theta_() is the Jacobi theta function.

A093085 Expansion of phi(-x) / psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 0, 0, 1, 2, 0, 0, -1, -4, 0, 0, 0, 6, 0, 0, 1, -8, 0, 0, 0, 12, 0, 0, -1, -18, 0, 0, -1, 24, 0, 0, 2, -32, 0, 0, 1, 44, 0, 0, -2, -58, 0, 0, -1, 76, 0, 0, 2, -100, 0, 0, 1, 128, 0, 0, -3, -164, 0, 0, -1, 210, 0, 0, 4, -264, 0, 0, 2, 332, 0, 0, -5, -416, 0, 0, -2, 516, 0, 0, 5, -640, 0, 0, 2, 790, 0, 0, -6, -968
Offset: 0

Views

Author

Michael Somos, Mar 20 2004, Oct 22 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
eta(q^2) * eta(q^8)^6 = eta(q)^2 * eta(q^4)^2 * eta(q^8) * eta(q^16)^2 + 2 * eta(q^2) * eta(q^4)^2 * eta(q^16)^4 is equivalent to the a(4*n), ..., a(4*n + 3) results.

Examples

			G.f. = 1 - 2*x + x^4 + 2*x^5 - x^8 - 4*x^9 + 6*x^13 + x^16 - 8*x^17 + 12*x^21 - ...
G.f. = 1/q - 2*q + q^7 + 2*q^9 - q^15 - 4*q^17 + 6*q^25 + q^31 - 8*q^33 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 x^(1/2) EllipticTheta[ 4, 0, x] / EllipticTheta[ 2, 0, x^2], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k)^[ 0, 2, 1, 2, 2, 2, 1, 2][1 + k%8], 1 + x * O(x^n)), n))}
    
  • PARI
    {a(n) = my(A, A2, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = 4*A + 16*A^2 + (1 + 8*A) * sqrt(A + 4*A^2)); polcoeff( sqrt(x / A), n))}
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) / (eta(x^2 + A) * eta(x^8 + A)^2), n))}

Formula

Expansion of q^(1/2) * eta(q)^2 * eta(q^4) / (eta(q^2) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -2, -1, -2, -2, -2, -1, -2, 0, ...].
Given g.f. A(x), then B(q) = A(q)^2 / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u * (u + 8) * (v + 4) - v^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A187154.
G.f.: Product_{k>0} (1 - x^k)^2 / ((1 - x^(4*k - 2)) * (1 - x^(8*k))^2).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A029838(n). a(4*n + 1) = -2 * A083365(n). Convolution square is A131124. Convolution inverse is A187154.

A258741 Expansion of f(x^3, x^5) / f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 1, -1, 2, -2, 2, -3, 4, -5, 5, -6, 8, -9, 10, -12, 15, -17, 19, -22, 26, -30, 33, -38, 45, -51, 56, -64, 74, -83, 92, -104, 119, -133, 147, -165, 187, -208, 229, -256, 288, -319, 351, -390, 435, -481, 528, -584, 649, -715, 783, -863, 954, -1047, 1145
Offset: 0

Views

Author

Michael Somos, Nov 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + x^2 - x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 3*x^7 + 4*x^8 - 5*x^9 + ...
G.f. = 1/q - q^15 + q^31 - q^47 + 2*q^63 - 2*q^79 + 2*q^95 - 3*q^111 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 16th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^4, x^4] / (QPochhammer[ -x, x^8] QPochhammer[ -x^7, x^8]), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ 1 / Product[ (1 + x^(8 k + 1)) (1 - x^(8 k + 4)) (1 + x^(8 k + 7)), {k, 0, Ceiling[ n/8]}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{1, -1, 0, -1, 0, 0, 1, 0, 1, 0, 0, -1, 0, -1, 1, 0}[[Mod[k, 16, 1]]], {k, n}], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 0, 1, -1, 0, -1, 0, 0, 1, 0, 1, 0, 0, -1, 0, -1, 1][k%16 + 1]), n))};

Formula

Expansion of f(x^4, x^12) / f(x, x^7) where f(, ) is Ramanujan's general theta function.
Euler transform of period 16 sequence [ -1, 1, 0, 1, 0, 0, -1, 0, -1, 0, 0, 1, 0, 1, -1, 0, ...].
G.f.: 1 / (Product_{k>=0} (1 + x^(8*k + 1)) * (1 - x^(8*k + 4)) * (1 + x^(8*k + 7))).
G.f.: (1 + x^4 + x^12 + x^24 + x^40 + ...) / (1 + x + x^7 + x^10 + x^22 + ...). [Ramanujan]
G.f.: 1 - x * (1 - x) / (1 - x^2) + x^4 * (1 - x) * (1 - x^3) / ((1 - x^2) * (1 - x^4)) - ... [Ramanujan]
a(n) = (-1)^n * A036016(n) = A029838(2*n) = A082303(2*n).
Convolution product of A106507 and A214264.

A259774 Expansion of f(x, x^7) / f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 0, 0, -1, 1, -1, 1, -1, 2, -2, 2, -3, 4, -4, 4, -6, 7, -7, 8, -10, 12, -13, 14, -17, 21, -22, 24, -29, 33, -36, 40, -46, 53, -58, 63, -73, 83, -90, 99, -113, 127, -138, 152, -171, 191, -209, 228, -255, 285, -309, 338, -377, 416, -453, 495, -547, 603, -656
Offset: 0

Views

Author

Michael Somos, Nov 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^8 - 2*x^9 + 2*x^10 - 3*x^11 + ...
G.f. = q^7 - q^55 + q^71 - q^87 + q^103 - q^119 + 2*q^135 - 2*q^151 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 15th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^4, x^4] / (QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8]), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ 1 / Product[ (1 + x^(8 k + 3)) (1 - x^(8 k + 4)) (1 + x^(8 k + 5)), {k, 0, Ceiling[ n/8]}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ 0, 0, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0}[[Mod[k, 16, 1]]], {k, n}], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0][k%16 + 1]), n))};

Formula

Expansion of f(x^4, x^12) / f(x^3, x^5) where f(, ) is Ramanujan's general theta function.
Euler transform of period 16 sequence [ 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, ...].
G.f.: (1 + x^4 + x^12 + x^24 + x^40 + ...) / (1 + x^3 + x^5 + x^14 + x^18 + ...). [Ramanujan]
G.f.: 1 - x^3 * (1 - x) / (1 - x^2) + x^8 * (1 - x) * (1 - x^3) / ((1 - x^2) * (1 - x^4)) - ... [Ramanujan]
a(n) = (-1)^n * A036015(n) = A029838(2*n + 1) = - A082303(2*n + 1).
Convolution product of A106507 and A214263.

A258939 Expansion of f(-x^3, -x^5) * f(x^3, x^13) / (f(-x, -x^2) * f(-x^8, -x^16)) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 12, 17, 22, 30, 38, 51, 64, 83, 104, 133, 165, 208, 256, 319, 390, 481, 584, 715, 863, 1047, 1258, 1517, 1812, 2172, 2584, 3080, 3648, 4327, 5104, 6028, 7084, 8330, 9756, 11430, 13340, 15574, 18122, 21086, 24464, 28378, 32832, 37977, 43823
Offset: 0

Views

Author

Michael Somos, Nov 07 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 17*x^8 + ...
G.f. = q^15 + q^47 + 2*q^79 + 3*q^111 + 5*q^143 + 6*q^175 + 9*q^207 + ...
		

Crossrefs

Cf. A029838.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{ 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0}[[Mod[k, 32, 1]]], {k, n}], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^-[ 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1][k%32 + 1]), n))};

Formula

Euler transform of period 32 sequence [ 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, ...].
- a(n) = A029838(4*n + 2).
a(n) ~ sqrt(2*(1+sqrt(2))) * exp(Pi*sqrt(n/2)) / (16*n^(3/4)). - Vaclav Kotesovec, Nov 07 2015

A279255 Expansion of chi(x) * chi(-x^3) * chi(-x^8) * chi(-x^24) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, -1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, -3, 0, 0, 0, -1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, -1, -5, 0, 0, 0, -2, 0, 0, 0, 5, 0
Offset: 0

Views

Author

Michael Somos, Dec 08 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^5 - x^9 + x^12 + x^17 - x^24 - x^25 - x^29 + 2*x^33 + ...
G.f. = q^-3 + q^-1 + q^7 - q^15 + q^21 + q^31 - q^45 - q^47 - q^55 + ...
		

Crossrefs

Cf. A029838.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^3, x^6] QPochhammer[ x^8, x^16] QPochhammer[ x^24, x^48], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^8 + A) * eta(x^24 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^16 + A) * eta(x^48 + A)), n))};

Formula

Euler transform of period 48 sequence [ 1, -1, 0, 0, 1, -1, 1, -1, 0, -1, 1, 0, 1, -1, 0, 0, 1, -1, 1, 0, 0, -1, 1, -2, 1, -1, 0, 0, 1, -1, 1, 0, 0, -1, 1, 0, 1, -1, 0, -1, 1, -1, 1, 0, 0, -1, 1, 0, ...].
a(4*n + 2) = a(4*n + 3) = a(6*n + 2) = a(6*n + 4) = 0.
a(4*n + 1) = a(12*n) = A029838(n).

A283023 Expansion of f(-x, -x^5)^2 / (f(x^2, x^10) * f(x^6, x^18)) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -2, 0, 2, 0, -4, 1, 6, 0, -8, 0, 12, -1, -18, 0, 24, 0, -32, 0, 44, 0, -58, 0, 76, 1, -100, 0, 128, 0, -164, 0, 210, 0, -264, 0, 332, -1, -416, 0, 516, 0, -640, -1, 790, 0, -968, 0, 1184, 2, -1444, 0, 1752, 0, -2120, 1, 2560, 0, -3078, 0, 3692, -2, -4420, 0
Offset: 0

Views

Author

Michael Somos, Feb 26 2017

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 2*x^3 - 4*x^5 + x^6 + 6*x^7 - 8*x^9 + 12*x^11 + ...
G.f. = q^-3 - 2*q + 2*q^9 - 4*q^17 + q^21 + 6*q^25 - 8*q^33 + 12*q^41 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2 QPochhammer[ -x^3, x^6]^2 QPochhammer[ x^12, x^24] / QPochhammer[ -x^2, x^4], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ -x^3, x^6]^2 QPochhammer[ x^12, x^24] / EllipticTheta[ 4, 0, x^4], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ 2^(1/2) x^(3/4) EllipticTheta[ 4, 0, x] EllipticTheta[ 3, 0, x^3] / (EllipticTheta[ 4, 0, x^4] EllipticTheta[ 2, Pi/4, x^3]), {x, 0, n}] // Simplify;
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A)^4 * eta(x^8 + A) / (eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^4 + A)^2 * eta(x^12 + A) * eta(x^24 + A)), n))};
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q)^2*eta(q^6)^4*eta(q^8)/(eta(q^2)*eta(q^3)^2*eta(q^4)^2*eta(q^12)*eta(q^24)))} \\ Altug Alkan, Mar 21 2018

Formula

Expansion of chi(-x)^2 * chi(x^3)^2 * chi(-x^12) / chi(x^2) in powers of x where chi() is a Ramanujan theta function.
Expansion of phi(-x) * chi(x^3)^2 * chi(-x^12) / phi(-x^4) in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of phi(-x) * phi(x^3) / (phi(-x^4) * psi(-x^6)) ih powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(3/4) * eta(q)^2 * eta(q^6)^4 * eta(q^8) / (eta(q^2) * eta(q^3)^2 * eta(q^4)^2 * eta(q^12) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [-2, -1, 0, 1, -2, -3, -2, 0, 0, -1, -2, 0, -2, -1, 0, 0, -2, -3, -2, 1, 0, -1, -2, 0, ...].
a(n) = A134178(2*n). a(6*n + 2) = A(6*n + 4) = 0.
a(2*n + 1) = -2 * A083365(n). a(4*n + 1) = -2 * A081055(n). a(4*n + 3) = 2 * A081056(n).
a(6*n) = A029838(n). a(12*n) = A258741(n). a(12*n + 6) = A259774(n). a(24*n + 12) = - A258939(n).

A296047 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 + x^(2*k)))^k.

Original entry on oeis.org

1, 1, -1, 1, 1, 0, 0, -2, 5, 0, -2, 0, 3, 5, -11, 5, 6, 9, -17, -2, 23, -3, -11, -25, 62, -11, -27, -27, 76, 20, -104, 10, 77, 101, -243, 58, 118, 147, -353, -25, 378, 48, -372, -298, 892, -165, -444, -621, 1524, -128, -1055, -559, 1869, 575, -2682, 84, 2054, 1979, -5325, 844, 2947
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 + x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 + x^(2*k)))^k.
Previous Showing 11-20 of 22 results. Next