cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A307484 Expansion of Product_{k>=1} 1/(1+x^k)^((-1)^k*k^2).

Original entry on oeis.org

1, 1, -4, 5, 3, -17, 33, -61, 67, 63, -392, 803, -1070, 898, 482, -4449, 11362, -18630, 21105, -11067, -24871, 103562, -227004, 359040, -417697, 266106, 312987, -1578543, 3635615, -6157911, 8155892, -7689028, 1502546, 14707881, -44539735, 87849728, -136927058, 171008704
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2019

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = (-1)^n * n^2, g(n) = -1.

Crossrefs

Product_{k>=1} 1/(1+x^k)^((-1)^k*k^b): A029838 (b=0), A284467 (b=1), this sequence (b=2).

Programs

  • Mathematica
    m = 37; CoefficientList[Series[Product[1/(1+x^k)^((-1)^k*k^2), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
    nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k - 1))^((2*k - 1)^2)/(1 + x^(2*k))^(4*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 14 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^((-1)^k*k^2)))

A306575 Expansion of 1/(1 - x - x^2/(1 - x^2 - x^3/(1 - x^3 - x^4/(1 - x^4 - x^5/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 21, 40, 77, 148, 285, 550, 1061, 2049, 3957, 7644, 14768, 28535, 55138, 106549, 205902, 397906, 768967, 1486070, 2871932, 5550233, 10726300, 20729542, 40061784, 77423250, 149628008, 289170949, 558851751, 1080037175, 2087280839, 4033881485
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 25 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x^k, 1 - x^k, {k, 2, nmax}]), {x, 0, nmax}], x]

Formula

a(n) ~ c * d^n, where d = 1.9326019136649450138850556203... and c = 0.389707331111778150048054243... - Vaclav Kotesovec, Jul 01 2019
Previous Showing 21-22 of 22 results.