cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A029998 Numbers k such that k^2 is palindromic in base 13.

Original entry on oeis.org

0, 1, 2, 3, 14, 28, 170, 183, 196, 209, 308, 340, 353, 366, 2198, 2380, 2562, 2898, 4026, 4242, 4396, 4578, 7078, 7662, 28562, 28731, 28900, 29069, 30772, 30941, 31110, 32813, 32982, 33151, 37374, 51510, 52360, 54942, 55449, 57124, 57293
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), this sequence (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

A030072 Numbers k such that k^2 is palindromic in base 14.

Original entry on oeis.org

0, 1, 2, 3, 15, 24, 30, 47, 165, 197, 211, 225, 239, 394, 408, 422, 2190, 2445, 2745, 2955, 3165, 5490, 5700, 8565, 38417, 38613, 38809, 39005, 41175, 41371, 41567, 41763, 43737, 43933, 44129, 48159, 55962, 76834, 77030, 77226, 79592, 79788
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), this sequence (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

Programs

  • Mathematica
    pal14Q[n_]:=Module[{idn14=IntegerDigits[n^2,14]},idn14==Reverse[idn14]]; Select[Range[0,80000],pal14Q] (* Harvey P. Dale, Mar 09 2012 *)

A030073 Numbers k such that k^2 is palindromic in base 15.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 12, 16, 19, 32, 39, 64, 76, 128, 144, 226, 241, 256, 271, 311, 452, 467, 478, 482, 576, 715, 904, 964, 1024, 1748, 1808, 1868, 2304, 2652, 2860, 3376, 3401, 3616, 3856, 4639, 6752, 6992, 7172, 8649, 10715, 13504, 13604
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), A029986 (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), this sequence (b=15), A029733 (b=16), A118651 (b=17).

Programs

  • Mathematica
    p15Q[n_]:=Module[{id15=IntegerDigits[n^2,15]},id15==Reverse[id15]]; Select[ Range[0,14000],p15Q] (* Harvey P. Dale, Jun 03 2020 *)

A263612 Palindromes in base 5 which are also squares.

Original entry on oeis.org

0, 1, 4, 121, 10201, 12321, 114411, 1002001, 1234321, 100020001, 102030201, 121242121, 131141131, 10000200001, 10221412201, 12102420121, 131441144131, 1000002000001, 1002003002001, 1020304030201, 1143442443411, 1210024200121, 4133144413314, 4342230322434, 13431400413431, 100000020000001
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Comments

Terms displayed in base 5. - Harvey P. Dale, Jan 10 2023

Crossrefs

Programs

  • Mathematica
    FromDigits[IntegerDigits[#,5]]&/@Select[Range[0,100000]^2,IntegerDigits[ #,5] == Reverse[ IntegerDigits[ #,5]]&] (* Harvey P. Dale, Jan 10 2023 *)

A263611 Base 5 numbers whose square is a palindrome in base 5.

Original entry on oeis.org

0, 1, 2, 11, 101, 111, 231, 1001, 1111, 10001, 10101, 11011, 11204, 100001, 101101, 110011, 242204, 1000001, 1001001, 1010101, 1042214, 1100011, 2020303, 2043122, 2443304, 10000001, 10011001, 10100101, 11000011, 100000001, 100010001, 100101001, 101000101, 110000011, 111103411
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Comments

A029988 expressed in base 5.

Crossrefs

Programs

  • Mathematica
    With[{b = 5}, FromDigits@ IntegerDigits[#, b] & /@ Select[Range[b^9], PalindromeQ[IntegerDigits[#^2, b]] &]] (* Michael De Vlieger, Aug 15 2022 *)

Formula

a(n) = A007091(A029988(n)).

Extensions

Name corrected by Charles R Greathouse IV, Aug 15 2022
Previous Showing 11-15 of 15 results.