cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 76 results. Next

A209940 Expansion of psi(x^4) * phi(-x^4)^4 / phi(x) in powers of x where phi(), psi() are Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, -8, 7, -10, 12, -8, 18, -18, 16, -24, 21, -20, 28, -32, 20, -32, 36, -24, 42, -42, 28, -48, 57, -36, 52, -40, 36, -58, 60, -56, 48, -66, 48, -72, 74, -42, 80, -80, 61, -82, 72, -56, 90, -96, 64, -72, 98, -70, 100, -104, 64, -106, 108, -72, 114, -96
Offset: 0

Views

Author

Michael Somos, Mar 16 2012

Keywords

Comments

Number 47 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 4*x^2 - 8*x^3 + 7*x^4 - 10*x^5 + 12*x^6 - 8*x^7 + 18*x^8 + ...
G.f. = q - 2*q^3 + 4*q^5 - 8*q^7 + 7*q^9 - 10*q^11 + 12*q^13 - 8*q^15 + 18*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 QPochhammer[ q^4]^9 / (QPochhammer[ q^2]^5 QPochhammer[ q^8]^2), {q, 0, n}]; (* Michael Somos, May 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^9 / (eta(x^2 + A)^5 * eta(x^8 + A)^2), n))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<0, 0, A = factor(2*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0^e, p==3, ((-p)^(e+1) - 1) / ((-p) - 1), p *= kronecker( 18, p); (-1)^(e*(p\6)) * (p^(e+1) - 1) / (p - 1))))};

Formula

Expansion of q^(-1/2) * eta(q)^2 * eta(q^4)^9 / (eta(q^2)^5 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -2, 3, -2, -6, -2, 3, -2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 512^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113419.
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = (1 - (-3)^(e+1)) / 4, b(p^e) = (-1)^(e * [p/6]) * ((p*f)^(e+1) - 1) / (p*f - 1) where f = Kronecker( 18, p).
a(n) = (-1)^n * A258096(n) = (-1)^floor(n/2) * A113419(n) = (-1)^(n + floor(n/2)) * A113417(n).

A209942 Expansion of (psi(-x) * phi(x)^4)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 14, 81, 238, 322, 0, -429, -82, 0, -2162, -3038, 1134, 2401, -2482, 0, 6958, 3332, 0, 1442, 0, 6561, 4508, -9758, 0, -1918, -18802, 0, -9362, -24638, 19278, 14641, -14756, 0, 0, 6562, 0, -1148, 33998, 26082, 20398, 0, 0, 28083, -49042, 0, 64078, -30268, 0
Offset: 0

Views

Author

Michael Somos, Mar 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 60 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 + 14*x + 81*x^2 + 238*x^3 + 322*x^4 - 429*x^6 - 82*x^7 - 2162*x^9 + ...
G.f. = q + 14*q^5 + 81*q^9 + 238*q^13 + 322*q^17 - 429*q^25 - 82*q^29 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^19 / (QPochhammer[ x] QPochhammer[ x^4])^7)^2, {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A)^19 / (eta(x + A) * eta(x^4 + A) )^7 )^2, n))};

Formula

Expansion of q^(-1/4) * ( eta(q^2)^19 / (eta(q) * eta(q^4) )^7 )^2 in powers of q.
Euler transform of period 4 sequence [ 14, -24, 14, -10, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 32768 (t/i)^5 f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) otherwise.
a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = 81 * a(n). Convolution of A000143 and A134343.
Convolution square of A258771. - Michael Somos, Jun 09 2015

A030202 Expansion of q^(-1/4) * eta(q) * eta(q^5) in powers of q.

Original entry on oeis.org

1, -1, -1, 0, 0, 0, 1, 2, 0, 0, -2, 1, -1, 0, 0, -2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, -2, 0, 0, 1, -1, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -1, 2, 0, 0, -2, 1, 0, 0, 0, -2, 0, -2, 0, 0, -2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, -2, 0, 0, 2, -1, -2, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Number 62 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - x^2 + x^6 + 2*x^7 - 2*x^10 + x^11 - x^12 - 2*x^15 + x^20 + ...
G.f. = q - q^5 - q^9 + q^25 + 2*q^29 - 2*q^41 + q^45 - q^49 - 2*q^61 + q^81 + ...
		

References

  • Bruce Berndt, Ramanujan's Notebooks Part III, Springer-Verlag; see page 44.

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma1(80), 1), 413)[1]; /* Michael Somos, May 16 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^5], {x, 0, n}] (* Michael Somos, Aug 08 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 1, Pi/5, q^2] EllipticTheta[ 1, 2 Pi/5, q^2] / Sqrt[5], {q, 0, 4 n + 1}] // FullSimplify; (* Michael Somos, Aug 08 2011 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x^5 + x * O(x^n)) * eta(x + x * O(x^n)), n))}; /* Michael Somos, Sep 04 2007 */
    
  • PARI
    {a(n) = my(A, p, e, x, y); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==5, (-1)^e, p%20>10, !(e%2), p%4==3, kronecker( -4, e+1), for( y=1, sqrtint(p\5), if( issquare(p - 5*y^2), x=y; break)); (-1)^(e*x) * (e+1))))}; /* Michael Somos, Sep 04 2007 */
    

Formula

Expansion of f(-x, -x^4) * f(-x^2, -x^3) in powers of x where f() is the Ramanujan two-variable theta function.
Expansion of q^(-1) * (phi(q) * phi(q^20) - phi(q^4) * phi(q^5)) / 2 in powers of q^4 where phi() is a Ramanujan theta function.
Euler transform of period 5 sequence [ -1, -1, -1, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 80^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(5^e) = (-1)^e, b(p^e) = (1+(-1)^e)/2 if p == 11, 13, 17, 19 (mod 20), b(p^e) = (i^n +(-i)^n)/2 if p == 3, 7 (mod 20), b(p^e) = (-1)^(e*y) * (e+1) if p == 1, 9 (mod 20) where p = x^2 + 5*y^2. - Michael Somos, Sep 04 2007
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(5*k)).
a(5*n + 3) = a(5*n + 4) = a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = -a(n). - Michael Somos, May 16 2015
Convolution square is A030205. - Michael Somos, May 16 2015
a(n) = (-1)^n * A159818(n). - Michael Somos, May 16 2015

A106406 Expansion of (eta(q) * eta(q^15))^2 / (eta(q^3) * eta(q^5)) in powers of q.

Original entry on oeis.org

1, -2, -1, 3, -1, 2, 0, -4, 1, 2, 0, -3, 0, 0, 1, 5, -2, -2, 2, -3, 0, 0, -2, 4, 1, 0, -1, 0, 0, -2, 2, -6, 0, 4, 0, 3, 0, -4, 0, 4, 0, 0, 0, 0, -1, 4, -2, -5, 1, -2, 2, 0, -2, 2, 0, 0, -2, 0, 0, 3, 2, -4, 0, 7, 0, 0, 0, -6, 2, 0, 0, -4, 0, 0, -1, 6, 0, 0, 2
Offset: 1

Views

Author

Michael Somos, May 02 2005

Keywords

Comments

Number 30 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = q - 2*q^2 - q^3 + 3*q^4 - q^5 + 2*q^6 - 4*q^8 + q^9 + 2*q^10 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(15), 1), 80); A[2] - 2*A[3] - A[4] + 3*A[5] - A[6] + 2*A[7]; /* Michael Somos, May 18 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^15])^2 / (QPochhammer[ q^3] QPochhammer[ q^5]), {q, 0, n}]; (* Michael Somos, May 18 2015 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ #, 3] KroneckerSymbol[ n/#, 5] &]]; (* Michael Somos, May 18 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^15 + A)^2 / (eta(x^3 + A) * eta(x^5 + A)), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( d, 3) * kronecker( n/d, 5)))};
    
  • PARI
    {a(n) = my(A, p, e, x); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==3 || p==5, (-1)^e, (p%15) != 2^(x = valuation( p%15, 2)), (e+1)%2, (e+1) * (-1)^(x*e))))};
    
  • PARI
    {a(n) = if( n<1, 0, (qfrep([2, 1;1, 8],n, 1) - qfrep([4, 1;1, 4], n, 1))[n])}; /* Michael Somos, Aug 25 2006 */
    

Formula

Euler transform of period 15 sequence [-2, -2, -1, -2, -1, -1, -2, -2, -1, -1, -2, -1, -2, -2, -2, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = -v^3 + 4 * u*v*w + 2 * u*w^2 + u^2*w.
a(n) is multiplicative with a(3^e) = a(5^e) = (-1)^e, a(p^e) = (1 + (-1)^e) / 2 if p == 7, 11, 13, 14 (mod 15), a(p^e) = e+1 if p == 1, 4 (mod 15), a(p^e) = (e+1) * (-1)^e if p == 2, 8 (mod 15). - Michael Somos, Oct 19 2005
G.f.: (1/2) * (Sum_{n,m in Z} x^(n^2 + n*m + 4*m^2) - x^(2*n^2 + n*m + 2 *m^2)). - Michael Somos, Aug 25 2006
G.f.: Sum_{k>0} Kronecker(k, 3) * x^k * (1 - x^k) * (1 - x^(2*k)) / (1 - x^(5*k)) = Sum_{k>0} Kronecker(k, 5) * x^k * (1 - x^k) / (1 - x^(3*k)).
G.f.: x * Product_{k>0} ((1 - x^k) * (1 - x^(15*k)))^2 / ((1 - x^(3*k)) * (1 - x^(5*k))).
a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0. a(3*n) = a(5*n) = -a(n).
A035175(n) = |a(n)|. a(n)>0 iff n in A028957. a(n)<0 iff n in A028955.
G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = 15^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, May 18 2015

A109039 Expansion of eta(q) * eta(q^3) * (eta(q^4) * eta(q^6) / eta(q^12))^2 in powers of q.

Original entry on oeis.org

1, -1, -1, -1, -1, 4, -1, 6, -1, -1, 4, -12, -1, -14, 6, 4, -1, 16, -1, 18, 4, 6, -12, -24, -1, -21, -14, -1, 6, 28, 4, 30, -1, -12, 16, -24, -1, -38, 18, -14, 4, 40, 6, 42, -12, 4, -24, -48, -1, -43, -21, 16, -14, 52, -1, 48, 6, 18, 28, -60, 4, -62, 30, 6
Offset: 0

Views

Author

Michael Somos, Jun 17 2005

Keywords

Comments

Number 25 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - q - q^2 - q^3 - q^4 + 4*q^5 - q^6 + 6*q^7 - q^8 - q^9 + 4*q^10 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 2), 64); A[1] - A[2] - A[3] - A[4] - A[5] + 4*A[6] - A[7] + 6*A[8] - A[9]; /* Michael Somos, May 18 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^3] (QPochhammer[ q^4] QPochhammer[ q^6] / QPochhammer[ q^12])^2, {q, 0, n}]; (* Michael Somos, May 18 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3] QPochhammer[ q^3, q^6]^3 EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 2, Pi/4, q^(1/2)]^2 / (4 q^(3/8)), {q, 0, n}]; (* Michael Somos, May 18 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^2 / eta(x^12 + A)^2, n))};
    

Formula

Euler transform of period 12 sequence [ -1, -1, -2, -3, -1, -4, -1, -3, -2, -1, -1, -4, ...].
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(3*k)) * (1 - x^(4*k))^2 / (1 + x^(6*k))^2.
a(n) = -A109040(n) unless n=0. a(2*n) = a(3*n) = a(n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12^(3/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A124815. - Michael Somos, May 18 2015
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(24*sqrt(3)) = 0.237425... . - Amiram Eldar, Jan 29 2024

A111949 Expansion of eta(q) * eta(q^2) * eta(q^10) * eta(q^20) / (eta(q^4) * eta(q^5)) in powers of q.

Original entry on oeis.org

1, -1, -2, 1, 1, 2, -2, -1, 3, -1, 0, -2, 0, 2, -2, 1, 0, -3, 0, 1, 4, 0, -2, 2, 1, 0, -4, -2, 2, 2, 0, -1, 0, 0, -2, 3, 0, 0, 0, -1, 2, -4, -2, 0, 3, 2, -2, -2, 3, -1, 0, 0, 0, 4, 0, 2, 0, -2, 0, -2, 2, 0, -6, 1, 0, 0, -2, 0, 4, 2, 0, -3, 0, 0, -2, 0, 0, 0, 0, 1, 5, -2, -2, 4, 0, 2, -4, 0, 2, -3, 0, -2, 0, 2, 0, 2, 0, -3, 0, 1, 2, 0, -2, 0, 4
Offset: 1

Views

Author

Michael Somos, Aug 22 2005

Keywords

Comments

Number 37 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = q - q^2 - 2*q^3 + q^4 + q^5 + 2*q^6 - 2*q^7 - q^8 + 3*q^9 - q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^2] QPochhammer[ q^10] QPochhammer[ q^20] / (QPochhammer[ q^4] QPochhammer[ q^5]), {q, 0, n}]; (* Michael Somos, May 19 2015 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[d, 2] (-1)^Quotient[d, 2] KroneckerSymbol[ n/d, 5], { d, Divisors[ n]}]]; (* Michael Somos, May 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^10 + A) * eta(x^20 + A) / eta(x^4 + A) / eta(x^5 + A), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (d%2) * (-1)^(d\2) * kronecker( n/d, 5)))};
    
  • PARI
    {a(n) = if( n<1, 0, qfrep( [1, 0; 0, 5], n)[n] - qfrep( [2, 1; 1, 3], n)[n])};

Formula

Euler transform of period 20 sequence [-1, -2, -1, -1, 0, -2, -1, -1, -1, -2, -1, -1, -1, -2, 0, -1, -1, -2, -1, -2, ...].
a(n) is multiplicative with a(p^e) = (-1)^e if p = 2, a(p^e) = 1 if p = 5, a(p^e) = (1 + (-1)^e) / 2 if p == 11, 13, 17, 19 (mod 20), a(p^e) = e + 1 if p == 1, 9 (mod 20), a(p^e) = (e + 1)*(-1)^e if p == 3, 7 (mod 20).
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 - x^k) * (1 - x^(2*k)) / (1 - x^(5*k)).
G.f.: Sum_{k>0} Kronecker(k, 5) * x^k / (1 + x^(2*k)).
G.f.: x * Product_{k>0} (1 - x^k) * (1 + x^(5*k)) * (1 - x^(20*k)) / (1 + x^(2*k)).
|a(n)| = A035170(n). a(2*n) = -a(n). a(2*n + 1) = A129391(n). a(4*n + 3) = -2 * A033764(n).
a(5*n) = a(n). - Michael Somos, May 19 2015

A113421 Expansion of eta(q)^2 * eta(q^4) * eta(q^6)^2 * eta(q^12) / eta(q^3)^2 in powers of q.

Original entry on oeis.org

1, -2, -1, 4, -4, 2, 6, -8, 1, 8, -12, -4, 14, -12, 4, 16, -16, -2, 18, -16, -6, 24, -24, 8, 21, -28, -1, 24, -28, -8, 30, -32, 12, 32, -24, 4, 38, -36, -14, 32, -40, 12, 42, -48, -4, 48, -48, -16, 43, -42, 16, 56, -52, 2, 48, -48, -18, 56, -60, 16, 62, -60, 6, 64, -56, -24, 66, -64, 24, 48, -72, -8, 74, -76, -21, 72
Offset: 1

Views

Author

Michael Somos, Oct 29 2005

Keywords

Comments

Number 26 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = q - 2*q^2 - q^3 + 4*q^4 - 4*q^5 + 2*q^6 + 6*q^7 - 8*q^8 + q^9 + 8*q^10 + ...
		

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^2 QPochhammer[ q^4] QPochhammer[ q^6]^2 QPochhammer[ q^12] / QPochhammer[ q^3]^2, {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d * kronecker( -3, d) * (-1)^(n / d \ 2)))};
    
  • PARI
    {a(n) = my(A, p, e, t); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, (-2)^e, p==3, (-1)^e, t = (-1)^(p\2); p *= kronecker( -3, p); (p^(e+1) - t^(e+1)) / (p - t))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)^2 * eta(x^12 + A) / eta(x^3 + A)^2, n))};

Formula

Euler transform of period 12 sequence [-2, -2, 0, -3, -2, -2, -2, -3, 0, -2, -2, -4, ...].
G.f.: Sum_{k>0} (3*k - 2) * x^(3*k - 2) / (1 + x^(6*k - 4)) - (3*k - 1) * x^(3*k - 1) / (1 + x^(6*k - 2)).
G.f.: Sum_{k>0} -(-1)^k * x^(2*k - 1) * (1 - x^(2*k - 1))^2 * (1 - x^(4*k - 2)) / (1 - x^(6*k - 3))^2.
a(n) is multiplicative with a(2^e) = (-2)^e, a(3^e) = (-1)^e, a(p^e) = (x^(e+1) - y^(e+1)) / (x - y) where x = p * Kronecker( -3, p) and y = (-1)^[p/2].

A124340 Number of solutions to n = x^2 + 2*y^2 + 4*(T(z) + T(w)) + 1 where x and y are integers, z and w are nonnegative integers and T(x) = (x^2+x)/2.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 8, 8, 7, 8, 10, 8, 12, 16, 8, 16, 18, 14, 18, 16, 16, 20, 24, 16, 21, 24, 20, 32, 28, 16, 32, 32, 20, 36, 32, 28, 36, 36, 24, 32, 42, 32, 42, 40, 28, 48, 48, 32, 57, 42, 36, 48, 52, 40, 40, 64, 36, 56, 58, 32, 60, 64, 56, 64, 48, 40, 66
Offset: 1

Views

Author

Michael Somos, Oct 26 2006

Keywords

Comments

Number 18 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 2*q^2 + 2*q^3 + 4*q^4 + 4*q^5 + 4*q^6 + 8*q^7 + 8*q^8 + 7*q^9 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A091337 := n -> [0, 1, 0, -1, 0, -1, 0, 1][`mod`(n, 8)+1]:
    seq(add(A091337(n/d)d, d in divisors(n)), n = 1..60); # Peter Bala, Jan 06 2021
  • Mathematica
    a[n_] := Sum[JacobiSymbol[2, d]*n/d, {d, Divisors[n]}]; a /@ Range[80] (* Jean-François Alcover, Jan 10 2014 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^2]^3 QPochhammer[ q^4] QPochhammer[ q^8]^2 / QPochhammer[ q]^2, {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, n / d * kronecker(2, d)))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; f = kronecker( 2, p); (p^(e+1) - f^(e+1)) / (p - f)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A) * eta(x^8 + A)^2 / eta(x + A)^2, n))};

Formula

Expansion of q * phi(q) * phi(q^2) * psi(q^4)^2 in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^3 * eta(q^4) * eta(q^8)^2 / eta(q)^2 in powers of q.
Euler transform of period 8 sequence [ 2, -1, 2, -2, 2, -1, 2, -4, ...].
a(n) is multiplicative with a(2^e) = 2^e, a(p^e) = (p^(e+1) - 1)/(p - 1) if p == 1, 7 (mod 8), a(p^e) = (p^(e+1) + (-1)^e)/(p + 1) if p == 3, 5 (mod 8).
G.f.: Sum_{k>0} k * x^k * (1 - x^(2*k)) / (1 + x^(4*k)).
G.f.: x * Product_{k>0} (1 + x^k)^2 * (1 - x^(2*k)) * (1 - x^(4*k)) * (1 - x^(8*k))^2.
From Peter Bala, Jan 06 2021: (Start)
a(n) = Sum_{ d | n } X(n/d)*d, where X(k) = A091337(k) is a non-principal Dirichlet charcter modulo 8.
G.f.: A(x) = Sum_{n = -oo..oo} (-1)^n*x^(4*n+1)/(1 - x^(4*n+1))^2. (End)
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A328895. - Amiram Eldar, Feb 20 2024

A125095 Expansion of phi(-x) * psi(x^4) in powers of x where psi(), phi() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 0, 0, 3, -2, 0, 0, 2, -2, 0, 0, 1, -4, 0, 0, 4, 0, 0, 0, 2, -2, 0, 0, 1, -4, 0, 0, 4, -2, 0, 0, 0, -2, 0, 0, 2, -2, 0, 0, 5, -2, 0, 0, 2, 0, 0, 0, 2, -6, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 3, -4, 0, 0, 4, -2, 0, 0, 2, -2, 0, 0, 0, -2, 0, 0, 6, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Nov 20 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 45 of the 74 eta-quotients listed in Table I of Martin (1996). - Michael Somos, Mar 14 2012

Examples

			G.f. = 1 - 2*x + 3*x^4 - 2*x^5 + 2*x^8 - 2*x^9 + x^12 - 4*x^13 + 4*x^16 + ...
G.f. = q - 2*q^3 + 3*q^9 - 2*q^11 + 2*q^17 - 2*q^19 + q^25 - 4*q^27 + 4*q^33 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, If[ Mod[#, 8] > 3, -1, 1] &]]; (* Michael Somos, Jul 09 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^8])^2 / (QPochhammer[ x^2] QPochhammer[ x^4]), {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, (-1)^(d%8>3)))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; qfrep( [1, 0; 0, 8], n)[n] - qfrep( [3, 1; 1, 3], n)[n])};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^8 + A)^2 / (eta(x^2 + A) * eta(x^4 + A)), n))}
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker(2, d) * kronecker( -4, n/d)))};

Formula

Expansion of q^(-1/2) * (eta(q)^2 * eta(q^8)^2) / (eta(q^2) * eta(q^4)) in powers of q.
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1^2*u6 * (u1 + 3*u3) + 2 * u2^2*u3 * (u2 + 3*u6) - 3 * u3^2*u2 * (u1 + u3) - 6 * u6^2*u1 * (u2 + u6).
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (e+1) * (-1)^e if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8).
Euler transform of period 8 sequence [ -2, -1, -2, 0, -2, -1, -2, -2, ...].
G.f.: (Sum_{k in Z} (-1)^k * x^k^2) * (Sum_{k>=0} x^(2*k^2 + 2*k)).
a(4*n + 2) = a(4*n + 3) = 0. a(n) = (-1)^n * A113411(n). a(4*n) = A112603(n). a(4*n + 1) = -2 * A033761(n).

A128711 Expansion of phi(x) * psi(x^4) * phi(-x^4)^4 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, -5, -14, 0, 0, 2, 34, 0, 0, 25, -28, 0, 0, -28, 0, 0, 0, -46, -14, 0, 0, 49, 4, 0, 0, 68, 82, 0, 0, 0, -62, 0, 0, -142, 50, 0, 0, -11, -158, 0, 0, 146, 0, 0, 0, -94, 70, 0, 0, 0, 178, 0, 0, 98, 0, 0, 0, 75, -92, 0, 0, -28, -62, 0, 0, -238, -206, 0
Offset: 0

Views

Author

Michael Somos, Mar 24 2007

Keywords

Comments

Number 48 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). - Michael Somos, Mar 14 2012

Examples

			G.f. = 1 + 2*x - 5*x^4 - 14*x^5 + 2*x^8 + 34*x^9 + 25*x^12 - 28*x^13 + ...
G.f. = q + 2*q^3 - 5*q^9 - 14*q^11 + 2*q^17 + 34*q^19 + 25*q^25 - 28*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2] QPochhammer[ x^4])^5 / (QPochhammer[ x] QPochhammer[ x^8])^2, {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%8>4, if( e%2, 0, p^e), for( i=1, sqrtint(p\2), if( issquare(p - 2*i^2, &x), break)); a0=1; a1=y=2*(2*x^2 - p) * (-1)^((p-1)/2); for( i=2, e, x = y*a1 - p^2*a0; a0=a1; a1=x); a1)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^4 + A))^5 / (eta(x + A) * eta(x^8 + A))^2, n))};

Formula

Expansion of q^(-1/2) * (eta(q^2) * eta(q^4))^5 / (eta(q) * eta(q^8))^2 in powers of q. - Michael Somos, Mar 14 2012
Euler transform of period 8 sequence [ 2, -3, 2, -8, 2, -3, 2, -6, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^e if p == 5, 7 (mod 8), b(p^e) = b(p) * b(p^(e-1)) - p^2 * b(p^(e-2)) if p == 1, 3 (mod 8) where b(p) = 2*(2*x^2 - p) * (-1)^((p-1)/2) and p = x^2 + 2*y^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(15/2) (t/i)^3 f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^k)^6 * (1 + x^k)^8 * (1 + x^(2*k))^3 / (1 + x^(4*k))^2.
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A128712(n). a(4*n + 1) = 2 * A128713(n).
Previous Showing 51-60 of 76 results. Next