cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A217257 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 7, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,3) = T(0,4) = T(0,5) = T(0,6) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 0, 6, 14, 14, 0, 0, 0, 0, 0, 6, 20, 28, 14, 0, 0, 0, 0, 0, 0, 26, 48, 42, 0, 0, 0, 0, 0, 0, 0, 26, 74, 90, 42, 0, 0, 0, 0, 0, 0, 0, 0, 100, 164, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 264, 296, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 364, 560, 428, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 17 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 20, 26, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 48, 74, 100, 100, 0, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 90, 162, 264, 364, 364, 0, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 42, 132, 296, 560, 924, 1288, 1288, 0, 0, 0, ... row n=5
...
		

References

  • E. Lucas, Théorie des nombres, A. Blanchard, Paris, 1958, p.89

Crossrefs

Cf. similar sequences: A216230, A216228, A216226, A216238, A216054.

Formula

T(n,n) = A024175(n).
T(n,n+1) = A024175(n+1).
T(n,n+2) = A094803(n+1).
T(n,n+3) = A007070(n).
T(n,n+4) = A094806(n+2).
T(n,n+5) = T(n,n+6) = A094811(n+2).
Sum_{k, 0<=k<=n} T(n-k,k) = A030436(n).

Extensions

a(69) = 0 deleted by Georg Fischer, Oct 16 2021

A336675 Number of paths of length n starting at initial node of the path graph P_10.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 251, 460, 911, 1690, 3327, 6225, 12190, 22950, 44744, 84626, 164407, 312019, 604487, 1150208, 2223504, 4239225, 8181175, 15621426, 30108147, 57556155, 110820165, 212037241, 407946421, 781074572, 1501844193, 2877011660, 5529362694
Offset: 0

Views

Author

Nachum Dershowitz, Jul 30 2020

Keywords

Comments

Also the number of paths along a corridor width 10, starting from one side.
In general, a(n,m) = (2^n/(m+1))*Sum_{r=1..m} (1-(-1)^r)*cos(Pi*r/(m+1))^n*(1+cos(Pi*r/(m+1))) gives the number of paths of length n starting at the initial node on the path graph P_m. Here we have m=10. - Herbert Kociemba, Sep 14 2020

Crossrefs

This is row 10 of A094718. Bisections give A224514 (even part), A216710 (odd part).
Cf. A000004 (row 0), A000007 (row 1), A000012 (row 2), A016116 (row 3), A000045 (row 4), A038754 (row 5), A028495 (row 6), A030436 (row 7), A061551 (row 8), A178381 (row 9), this sequence (row 10), A336678 (row 11), A001405 (limit).

Programs

  • Maple
    X := j -> (-1)^(j/11) - (-1)^(1-j/11):
    a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7, 9])/11:
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
  • Mathematica
    a[n_,m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]]
    Table[a[n,10],{n,0,40}]//Round (* Herbert Kociemba, Sep 14 2020 *)
  • PARI
    my(x='x+O('x^44)); Vec((1 - 3*x^2 + x^4)/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5)) \\ Joerg Arndt, Jul 31 2020

Formula

From Stefano Spezia, Jul 30 2020: (Start)
G.f.: (1 - 3*x^2 + x^4)/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 3*a(n-4) + a(n-5) for n > 4. (End)
a(n) = (2^n/11)*Sum_{r=1..10} (1-(-1)^r)*cos(Pi*r/11)^n*(1+cos(Pi*r/11)). - Herbert Kociemba, Sep 14 2020

A336678 Number of paths of length n starting at initial node of the path graph P_11.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 461, 922, 1702, 3404, 6315, 12630, 23494, 46988, 87533, 175066, 326382, 652764, 1217483, 2434966, 4542526, 9085052, 16950573, 33901146, 63255670, 126511340, 236063915, 472127830, 880983606, 1761967212, 3287837741
Offset: 0

Views

Author

Nachum Dershowitz, Jul 30 2020

Keywords

Comments

Also the number of paths along a corridor width 11, starting from one side.
In general, a(n,m) = (2^n/(m+1))*Sum_{r=1..m} (1-(-1)^r)*cos(Pi*r/(m+1))^n*(1+cos(Pi*r/(m+1))) gives the number of paths of length n starting at the initial node on the path graph P_m. Here we have m=11. - Herbert Kociemba, Sep 14 2020

Crossrefs

This is row 11 of A094718. Bisections give A087944 (even part), A087946 (odd part).
Cf. A000004 (row 0), A000007 (row 1), A000012 (row 2), A016116 (row 3), A000045 (row 4), A038754 (row 5), A028495 (row 6), A030436 (row 7), A061551 (row 8),
A178381 (row 9), A336675 (row 10), this sequence (row 11), A001405 (limit).

Programs

  • Maple
    X := j -> (-1)^(j/12) - (-1)^(1-j/12):
    a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7, 9, 11])/12:
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
  • Mathematica
    LinearRecurrence[{0, 6, 0, -9, 0, 2}, {1, 1, 2, 3, 6, 10}, 40] (* Harvey P. Dale, Sep 08 2020 *)
    a[n_,m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]]
    Table[a[n,11], {n,0,40}]//Round (* Herbert Kociemba, Sep 14 2020 *)
  • PARI
    my(x='x+O('x^44)); Vec(-(x^5+3*x^4-3*x^3-4*x^2+x+1)/((2*x^2-1)*(x^4-4*x^2+1))) \\ Joerg Arndt, Jul 31 2020

Formula

G.f.: -(x^5+3*x^4-3*x^3-4*x^2+x+1)/((2*x^2-1)*(x^4-4*x^2+1)).
a(n) = (2^n/12)*Sum_{r=1..11} (1-(-1)^r)*cos(Pi*r/12)^n*(1+cos(Pi*r/12)). - Herbert Kociemba, Sep 14 2020

A030435 Expansion of g.f. (1 + x - 2*x^2 - x^3)/(1/2 - 2*x^2 + x^4).

Original entry on oeis.org

2, 2, 4, 6, 12, 20, 40, 68, 136, 232, 464, 792, 1584, 2704, 5408, 9232, 18464, 31520, 63040, 107616, 215232, 367424, 734848, 1254464, 2508928, 4283008, 8566016, 14623104, 29246208, 49926400, 99852800, 170459392, 340918784, 581984768, 1163969536, 1987020288
Offset: 0

Views

Author

Keywords

Comments

Also (starting 4,6,...) the number of zig-zag paths from top to bottom of a rectangle of width 7, whose color is that of the top right corner. - Joseph Myers, Dec 24 2008

Crossrefs

Twice A030436.

Programs

  • Mathematica
    CoefficientList[Series[(1+x-2*x^2-x^3)/(1/2-2*x^2+x^4),{x,0,40}],x] (* Harvey P. Dale, Oct 05 2020 *)
  • PARI
    Vec((1+x-2*x^2-x^3)/(1/2-2*x^2+x^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

E.g.f.: cosh(r*x) + cosh(s*x) + (r*sinh(r*x) + s*sinh(s*x))/2, where r = sqrt(2 - sqrt(2)) and s = sqrt(2 + sqrt(2)). - Stefano Spezia, Jun 14 2023
Previous Showing 11-14 of 14 results.