cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A239009 Exponents m such that the decimal expansion of 4^m exhibits its first zero from the right later than any previous exponent.

Original entry on oeis.org

0, 2, 4, 7, 9, 12, 14, 16, 17, 23, 34, 36, 38, 43, 77, 88, 216, 350, 979, 24186, 28678, 134759, 205829, 374627, 2200364, 16625243, 29451854, 162613199, 8078176309, 9252290259, 17556077280, 49718535383, 51616746477, 54585993918
Offset: 1

Views

Author

Keywords

Comments

Assume that a zero precedes all decimal expansions. This will take care of those cases in A030701.
Inspired by the seqfan list discussion Re: "possible sequence", beginning with David Wilson 7:57 PM Mar 06 2014 and continued by M. F. Hasler, Allan C. Wechsler and Franklin T. Adams-Watters.
Not just twice A031142, although {16625243, 29451854, 162613199, 9252290259, 51616746477, 54585993918, 146235898847, 1360645542292} are possible candidates.
Location of first zeros (from the right) of terms: 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 23, 24, 27, 30, 39, 53, 58, 94, 113, 120, 121, 122, 139, 165, 177, 192, 213, 217, 228, 229, 230, 250, 251. - Chai Wah Wu, Jan 08 2020

Crossrefs

Programs

  • Mathematica
    f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[4, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 100000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

a(28)-a(30) from Bert Dobbelaere, Jan 21 2019
a(31)-a(34) from Chai Wah Wu, Jan 08 2020

A305944 Number of powers of 4 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

16, 22, 17, 14, 11, 19, 15, 15, 21, 20, 17, 22, 12, 13, 17, 24, 16, 19, 8, 17, 11, 15, 17, 15, 20, 17, 18, 20, 17, 21, 16, 19, 16, 14, 15, 19, 20, 24, 7, 16, 13, 14, 13, 14, 22, 22, 15, 18, 16, 16, 25
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) = 16 is the number of terms in A030701 and in A238940, which includes the power 4^0 = 1.
These are the row lengths of A305924. It remains an open problem to provide a proof that these rows are complete (as are all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.

Crossrefs

Cf. A030701 = row 0 of A305924: k such that 4^k has no 0's; A238940: these powers 4^k.
Cf. A020665: largest k such that n^k has no '0's.
Cf. A063575 = column 1 of A305924: least k such that 4^k has n digits '0' in base 10.
Cf. A305942 (analog for 2^k), ..., A305947, A305938, A305939 (analog for 9^k).

Programs

  • PARI
    A305944(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(4^k))==n)
    
  • PARI
    A305944_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(4^k)),nMax)]++);a[^-1]}

A305945 Number of powers of 5 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

16, 16, 12, 11, 21, 12, 17, 14, 16, 17, 14, 13, 16, 18, 13, 14, 10, 10, 21, 7, 19, 13, 15, 13, 10, 15, 12, 15, 11, 11, 15, 10, 9, 15, 17, 16, 13, 12, 12, 11, 14, 9, 14, 15, 16, 14, 13, 14, 15, 24, 14
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) = 16 is the number of terms in A008839 and in A195948, which includes the power 5^0 = 1.
These are the row lengths of A305925. It remains an open problem to provide a proof that these rows are complete (as are all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.

Crossrefs

Cf. A030701 (= row 0 of A305925): k such that 5^k has no 0's; A195948: these powers 4^k.
Cf. A020665: largest k such that n^k has no '0's.
Cf. A063585 (= column 1 of A305925): least k such that 5^k has n digits '0' in base 10.
Cf. A305942 (analog for 2^k), ..., A305947, A305938, A305939 (analog for 9^k).

Programs

  • PARI
    A305945(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(5^k))==n)
    
  • PARI
    A305945_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(5^k)),nMax)]++);a[^-1]}

A195985 Least prime such that p^2 is a zeroless n-digit number.

Original entry on oeis.org

2, 5, 11, 37, 107, 337, 1061, 3343, 10559, 33343, 105517, 333337, 1054133, 3333373, 10540931, 33333359, 105409309, 333333361, 1054092869, 3333333413, 10540925639, 33333333343, 105409255363, 333333333367, 1054092553583, 3333333333383, 10540925534207
Offset: 1

Views

Author

M. F. Hasler, Sep 26 2011

Keywords

Examples

			a(1)^2=4, a(2)^2=25, a(3)^2=121, a(4)^2=1369 are the least squares of primes with 1, 2, 3 resp. 4 digits, and these digits are all nonzero.
a(5)=107 since 101^2=10201 and 103^2=10609 both contain a zero digit, but 107^2=11449 does not.
a(1000)=[10^500/3]+10210 (500 digits), since primes below sqrt(10^999) = 10^499*sqrt(10) ~ 3.162e499 have squares of less than 1000 digits, between sqrt(10^999) and 10^500/3 = sqrt(10^1000/9) ~ 3.333...e499 they have at least one zero digit. Finally, the 7 primes between 10^500/3 and a(1000) also happen to have a "0" digit in their square, but not so
  a(1000)^2 = 11111...11111791755555...55555659792849
  = [10^500/9]*(10^500+5) + 6806*10^500+104237294.
		

Crossrefs

Programs

  • PARI
    a(n)={ my(p=sqrtint(10^n\9)-1); until( is_A052382(p^2), p=nextprime(p+2));p}

A050725 Decimal expansion of 4^n contains no pair of consecutive equal digits (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 24, 27, 28, 33, 34, 40, 52, 63
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

No additional terms up to 1200. - Harvey P. Dale, Mar 30 2011
No additional terms up to 100000. - Michel Marcus, Oct 16 2019
Half of even terms of A050723. - Joerg Arndt, Oct 16 2019

Examples

			4^63 = 85070591730234615865843651857942052864.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,70],FreeQ[Differences[IntegerDigits[4^#]],0]&] (* Harvey P. Dale, Jul 25 2013 *)
  • PARI
    isok(n) = {my(d = digits(4^n), c = d[1]); for (i=2, #d, if (d[i] == c, return (0)); c = d[i];); return (1);} \\ Michel Marcus, Oct 16 2019

A252482 Exponents n such that the decimal expansion of the power 12^n contains no zeros.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 10, 14, 20, 26
Offset: 1

Views

Author

M. F. Hasler, Dec 17 2014

Keywords

Comments

Conjectured to be finite.
See A245853 for the actual powers 12^a(n).

Crossrefs

For zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A245852, A240945 (k=9), A195946 (x=11), A245853, A195945; A195942, A195943, A103662.
For the corresponding exponents, see A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, this sequence A252482, A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Mathematica
    Select[Range[0,30],DigitCount[12^#,10,0]==0&] (* Harvey P. Dale, Apr 06 2019 *)
  • PARI
    for(n=0,9e9,vecmin(digits(12^n))&&print1(n","))

A306114 Largest k such that 4^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

43, 92, 77, 88, 115, 171, 182, 238, 235, 308, 324, 348, 412, 317, 366, 445, 320, 424, 362, 448, 546, 423, 540, 545, 612, 605, 567, 571, 620, 641, 619, 700, 708, 704, 808, 762, 811, 744, 755, 971, 896, 900, 935, 862, 986, 954, 982, 956, 1057, 1037, 1128
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030701: exponents of powers of 4 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063575: least k such that 4^k has n digits 0 in base 10.
Cf. A305944: number of k's such that 4^k has n digits 0.
Cf. A305924: row n lists exponents of 4^k with n digits 0.
Cf. A030701: { k | 4^k has no digit 0 } : row 0 of the above.
Cf. A238940: { 4^k having no digit 0 }.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306114_vec(nMax,M=99*nMax+199,x=4,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}
Previous Showing 21-27 of 27 results.