cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A133930 Decimal expansion of the solution to x^x = Phi (A001622, the Golden Ratio).

Original entry on oeis.org

1, 4, 0, 7, 5, 7, 9, 8, 1, 4, 4, 5, 8, 8, 1, 0, 0, 0, 4, 8, 7, 3, 2, 1, 0, 1, 8, 8, 3, 1, 5, 3, 1, 8, 6, 8, 1, 0, 0, 5, 6, 6, 6, 3, 9, 6, 3, 9, 2, 7, 0, 5, 1, 0, 6, 7, 8, 6, 7, 2, 6, 6, 8, 0, 3, 1, 0, 1, 0, 3, 8, 0, 7, 3, 3, 2, 6, 5, 8, 9, 2, 2, 3, 1, 2, 0, 5, 7, 6, 3, 6, 3, 2, 3, 0, 5, 2, 4, 2, 4, 4, 2, 1, 7, 1
Offset: 1

Views

Author

Rick L. Shepherd, Sep 29 2007

Keywords

Examples

			x = 1.40757981445881000487...
		

Crossrefs

Programs

  • Mathematica
    x=GoldenRatio; RealDigits[Log[x]/ProductLog[Log[x]],10,6! ][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2010 *)
  • PARI
    solve(x=1,2,x^x-(1+sqrt(5))/2)

A387131 Decimal expansion of the real part of the complex solutions to log(z) = -1/z on the principal branch of log(z).

Original entry on oeis.org

1, 6, 8, 3, 7, 6, 3, 7, 9, 0, 8, 7, 2, 2, 2, 9, 1, 0, 5, 5, 7, 0, 2, 9, 0, 4, 0, 1, 9, 6, 4, 1, 9, 7, 9, 8, 8, 7, 7, 3, 7, 4, 7, 4, 8, 2, 9, 2, 5, 4, 1, 3, 3, 6, 1, 6, 4, 4, 4, 6, 0, 5, 7, 6, 4, 0, 8, 1, 7, 1, 1, 4, 8, 7, 7, 8, 5, 2, 0, 5, 8, 8, 1, 2, 8, 3, 2, 8, 4, 7, 9, 7, 8, 9, 9, 5, 2, 3, 6, 6
Offset: 0

Views

Author

Stefano Spezia, Aug 17 2025

Keywords

Examples

			0.16837637908722291055702904019641979887737474829...
		

Crossrefs

Cf. A387132 (absolute value of the imaginary part).

Programs

  • Mathematica
    RealDigits[Re[-1/ProductLog[-1]],10,100][[1]]

Formula

Equals Re(-1/LambertW(-1)).

A387132 Decimal expansion of the absolute value of the imaginary part of the complex solutions to log(z) = -1/z on the principal branch of log(z).

Original entry on oeis.org

7, 0, 7, 7, 5, 4, 1, 8, 8, 7, 8, 4, 7, 2, 7, 6, 1, 6, 4, 7, 2, 8, 4, 5, 8, 9, 3, 0, 7, 6, 5, 1, 6, 2, 3, 9, 4, 9, 3, 8, 4, 0, 8, 1, 4, 2, 3, 7, 5, 0, 1, 5, 5, 7, 1, 7, 8, 1, 0, 4, 5, 9, 3, 4, 5, 7, 6, 8, 8, 1, 8, 9, 8, 6, 1, 3, 5, 2, 5, 6, 8, 1, 6, 3, 1, 1, 1, 1, 0, 6, 4, 5, 5, 7, 1, 6, 0, 5, 6, 5
Offset: 0

Views

Author

Stefano Spezia, Aug 17 2025

Keywords

Examples

			0.7077541887847276164728458930765162394938408142...
		

Crossrefs

Cf. A387131 (real part).

Programs

  • Mathematica
    RealDigits[Im[-1/ProductLog[-1]],10,100][[1]]

Formula

Equals Im(-1/LambertW(-1)).
Equals -Im(-1/LambertW(-1, -1)).

A173169 Decimal expansion of the solution x to x^x = A, the Glaisher-Kinkelin constant (A074962).

Original entry on oeis.org

1, 2, 2, 5, 1, 2, 6, 3, 0, 4, 3, 2, 1, 1, 8, 1, 9, 1, 4, 9, 0, 7, 1, 0, 7, 6, 0, 1, 7, 2, 1, 6, 7, 4, 9, 5, 6, 8, 3, 6, 4, 0, 2, 7, 5, 1, 4, 3, 2, 2, 8, 0, 3, 0, 0, 0, 2, 2, 3, 8, 5, 0, 3, 7, 4, 0, 3, 9, 4, 2, 9, 0, 1, 0, 7, 8, 5, 2, 1, 0, 6, 6, 0, 1, 6, 0, 2, 6, 1, 5, 4, 4, 0, 3, 5, 7, 5, 4, 5, 0, 8, 8, 0, 2, 5
Offset: 1

Views

Author

Keywords

Examples

			1.22512630432118191..^1.22512630432118191.. = 1.28242712910062263687534256886979..
		

Crossrefs

Programs

  • Mathematica
    x=Glaisher;RealDigits[Log[x]/ProductLog[Log[x]],10,4*5! ][[1]]
  • PARI
    (x->x/lambertw(x))(1/12-zeta'(-1)) \\ Charles R Greathouse IV, Dec 12 2013

Extensions

Keyword:cons added by R. J. Mathar, Feb 13 2010

A181171 Decimal expansion of the base x for which the double logarithm of 2 equals the natural log of 2, that is, log_x log_x 2 = log 2.

Original entry on oeis.org

1, 6, 3, 6, 6, 2, 6, 2, 0, 7, 7, 8, 0, 9, 2, 3, 7, 7, 0, 6, 6, 3, 9, 2, 3, 4, 8, 9, 7, 2, 1, 8, 3, 5, 0, 2, 1, 8, 2, 4, 4, 1, 7, 1, 6, 0, 2, 9, 9, 4, 1, 7, 0, 8, 6, 8, 5, 8, 7, 4, 2, 6, 0, 0, 5, 8, 9, 0, 2, 0, 9, 6, 4, 6, 0, 3, 9, 5, 8, 5, 9, 7, 3, 6, 5, 1, 9, 7, 1, 8, 1, 0, 6, 0, 0, 8, 7, 6, 2, 0, 3, 9, 1, 5, 0
Offset: 1

Views

Author

Geoffrey Caveney, Oct 08 2010

Keywords

Examples

			From _R. J. Mathar_, Oct 09 2010: (Start)
1.63662620778092377066392348972183502182...
log_(1.63662..)(2) = 1.4070142427036...
log_(1.63662..)(1.407014..) = A002162. (End)
		

Crossrefs

Cf. A030797, which is the decimal expansion of the base n for which the double logarithm of e (log_n log_n e) = log e = 1, and which is the inverse of LambertW(1).

Programs

  • Maple
    f := log(log(2))/log(x)-log(log(x))/log(x)-log(2) ; fz := x-f/diff(f,x) ; z := 1.6 ; Digits := 120 ; for i from 1 to 10 do z := evalf(subs(x=z,fz)) ; print(%) ; end do: # R. J. Mathar, Oct 09 2010
  • Mathematica
    RealDigits[ Exp[ ProductLog[Log[2]^2] / Log[2]], 10, 105][[1]] (* Jean-François Alcover, Jan 28 2014 *)

Extensions

More digits from R. J. Mathar, Oct 09 2010

A332915 Decimal expansion of the constant W(1) + 1/W(1), where W is Lambert's function.

Original entry on oeis.org

2, 3, 3, 0, 3, 6, 6, 1, 2, 4, 7, 6, 1, 6, 8, 0, 5, 8, 3, 2, 2, 5, 1, 7, 0, 4, 3, 9, 1, 6, 2, 0, 6, 2, 6, 3, 0, 1, 8, 9, 8, 3, 3, 7, 7, 3, 8, 5, 3, 9, 8, 6, 1, 4, 2, 7, 0, 5, 5, 8, 7, 9, 8, 4, 7, 7, 0, 3, 2, 1, 6, 4, 0, 2, 7, 3, 6, 8, 0, 3, 0, 3, 4, 8, 2, 3, 0
Offset: 1

Views

Author

Martin Renner, Mar 02 2020

Keywords

Comments

The graph of the exponential function exp(x) moved to the right by W(1) + 1/W(1) touches the graph of the natural logarithm log(x) at point (x,y) = (1/W(1), W(1)) = (A030797, A030178).

Examples

			2.33036612476168058322517043916206263018983377385398...
		

Crossrefs

Programs

  • Maple
    evalf[200](LambertW(1) + 1/LambertW(1));
  • Mathematica
    RealDigits[N[LambertW[1] + 1/LambertW[1], 120]][[1]] (* Vaclav Kotesovec, Mar 02 2020 *)
  • PARI
    my(x=lambertw(1)); x+1/x \\ Michel Marcus, Mar 02 2020

Formula

Equals 2 + Integral_{x=0..1} W(x) dx. - Amiram Eldar, Jul 18 2021
Previous Showing 11-16 of 16 results.