A239015 Exponents m such that the decimal expansion of 11^m exhibits its first zero from the right later than any previous exponent.
0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 36, 41, 366, 488, 4357, 69137, 89371, 143907, 542116, 2431369, 5877361, 8966861, 121915452, 123793821, 221788016, 709455085, 1571200127, 2640630712, 6637360862, 64994336645, 74770246842
Offset: 1
Examples
Illustration of initial term, with the 0 enclosed in parentheses: n, position of 0, 11^a(n) 1, 2, (0)1 2, 3, (0)11 3, 4, (0)121 4, 5, (0)1331 5, 6, (0)14641 6, 7, (0)1771561 7, 8, (0)19487171 8, 9, (0)214358881 9, 10, (0)2357947691 10, 11, (0)3138428376721 11, 12, (0)34522712143931 12, 13, (0)379749833583241 13, 14, (0)4177248169415651 14, 15, (0)45949729863572161 15, 16, (0)5559917313492231481 16, 17, 3091268053287(0)672635673352936887453361 ... - _N. J. A. Sloane_, Jan 16 2020
Crossrefs
Programs
-
Mathematica
f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[11, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 40000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst
Extensions
a(28)-a(34) from Bert Dobbelaere, Jan 22 2019
a(35)-a(36) from Chai Wah Wu, Jan 16 2020
Comments