cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A031413 Numbers k such that the continued fraction for sqrt(k) has even period 2*m and the m-th term of the periodic part is 10.

Original entry on oeis.org

102, 114, 118, 134, 142, 228, 237, 249, 273, 309, 321, 404, 412, 428, 436, 452, 460, 476, 492, 500, 508, 524, 540, 548, 556, 572, 630, 645, 655, 670, 695, 705, 745, 755, 805, 820, 830, 895, 906, 1002, 1038, 1050, 1146, 1182, 1194, 1232, 1253, 1290, 1337
Offset: 1

Views

Author

Keywords

Comments

See comment to A031551. - Harvey P. Dale, Jul 10 2012

Crossrefs

Programs

  • Mathematica
    epQ[n_]:=Module[{p=ContinuedFraction[Sqrt[n]][[2]],len},len=Length[p];EvenQ[len]&&p[[len/2]]==10];nn=1300;With[{trms=Complement[Range[ nn],Range[ Floor[Sqrt[nn]]]^2]},Select[trms,epQ]] (* Harvey P. Dale, Jul 10 2012 *)
    n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[EvenQ[len] && c[[2, len/2]] == 10, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014 *)

A031414 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 1.

Original entry on oeis.org

13, 29, 53, 58, 74, 85, 97, 106, 125, 137, 157, 173, 185, 229, 233, 241, 293, 298, 314, 338, 346, 353, 365, 389, 397, 425, 433, 445, 457, 461, 533, 538, 541, 554, 557, 593, 629, 634, 641, 661, 673, 698, 733, 746, 754, 769, 794, 818, 821, 829, 845, 857, 877
Offset: 1

Views

Author

Keywords

Examples

			The continued fraction of sqrt[29] is {5; 2, 1, 1, 2, 10}. The center number in the periodic part is 1.
		

Crossrefs

Subsequence of A003814.

Programs

  • Mathematica
    n = 1; t = {}; While[Length[t] < 60, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 1, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 03 2014 *)

Extensions

Initial 2 removed by T. D. Noe, Apr 03 2014
Definitions of A031414-A031423 clarified by N. J. A. Sloane, Aug 18 2021

A031415 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 2.

Original entry on oeis.org

41, 61, 113, 130, 181, 202, 265, 269, 313, 317, 394, 421, 458, 586, 613, 617, 685, 697, 761, 773, 853, 925, 929, 937, 986, 1013, 1066, 1109, 1117, 1201, 1213, 1301, 1325, 1354, 1409, 1417, 1429, 1466, 1586, 1625, 1637, 1649, 1714, 1741, 1745, 1753, 1861
Offset: 1

Views

Author

Keywords

Comments

In general, the simple continued fraction expansion of sqrt(m) is a periodic palindromic sequence. That is, contfrac( sqrt(m) ) = [c(0); c(1), c(2), ..., c(p), c(p+1), ...] where p is the period. c(p) = 2*c(0), c(k) = c(p+k) for k>0, c(k) = c(p-k) for p>k>0. If the period p is odd, then p = 2*k+1 and c(k) = c(k+1) can be considered a pair of equal central terms. If the period is even, then p = 2*k and the unique central term is c(k). - Michael Somos, Apr 04 2014

Examples

			The simple continued fraction expansion of sqrt(41) = [6; 2, 2, 12,  2, 2, 12, 2, 2, 12, ...] with odd period 3 and two terms equal to 2. Another example is sqrt(202) = [14; 4, 1, 2, 2, 1, 4, 28, 4, 1, 2, 2, 1, 4, 28, 4, 1, 2, 2, 1, 4, 28,  ...] with odd period 7 and two terms equal to 2. - _Michael Somos_, Apr 03 2014
		

Crossrefs

Subsequence of A003814.

Programs

  • Mathematica
    n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 2, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 03 2014 *)
  • Python
    from sympy.ntheory.continued_fraction import continued_fraction_periodic
    A031415_list = []
    for n in range(1,10**3):
        cf = continued_fraction_periodic(0,1,n)
        if len(cf) > 1 and len(cf[1]) > 1 and len(cf[1]) % 2 and cf[1][len(cf[1])//2] == 2:
            A031415_list.append(n) # Chai Wah Wu, Sep 16 2021

Extensions

a(1) corrected by T. D. Noe, Apr 03 2014

A031416 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 3.

Original entry on oeis.org

89, 149, 193, 218, 250, 277, 337, 493, 521, 569, 653, 709, 914, 1009, 1018, 1037, 1385, 1465, 1553, 1597, 1618, 1754, 1781, 1898, 1921, 1973, 1994, 2069, 2129, 2146, 2293, 2378, 2389, 2441, 2474, 2561, 2725, 2741, 2777, 2897, 2957, 2986, 3170, 3229, 3265
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A003814.

Programs

  • Mathematica
    n = 1; t = {}; While[Length[t] < 60, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 3, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 03 2014 *)
    cfo3Q[n_]:=Module[{s=Sqrt[n],cf,len},cf=If[IntegerQ[s],{0,0}, ContinuedFraction[ s ][[2]]];len=Length[cf];OddQ[len]&&cf[[ (len+1)/2]] == cf[[(len-1)/2]]==3]; Select[Range[3300],cfo3Q] (* Harvey P. Dale, Sep 25 2019 *)

Extensions

Initial 10 removed by T. D. Noe, Apr 03 2014

A031417 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 4.

Original entry on oeis.org

274, 370, 481, 797, 953, 1069, 1249, 1313, 1378, 1381, 1514, 1657, 1658, 1733, 1889, 2125, 2297, 2377, 2554, 2557, 2833, 2834, 2929, 2941, 3226, 3329, 3338, 3433, 3541, 3761, 3874, 3989, 4093, 4106, 4441, 4442, 4561, 4682, 4685, 4933, 4937, 5197, 5450
Offset: 1

Views

Author

Keywords

Examples

			The simple continued fraction for sqrt(274) = [16; 1, 1, 4, 4, 1, 1, 32, ...] with odd period 7 and central term 4. Another example is sqrt(481) = [21; 1, 13, 1, 1, 1, 4, 4, 1, 1, 1, 13, 1, 42, ...] with odd period 13 and central term 4. - _Michael Somos_, Apr 03 2014
		

Crossrefs

Subsequence of A003814.

Programs

  • Mathematica
    n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 4, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 03 2014 *)
    cf4Q[n_]:=Module[{s=Sqrt[n],cf,len},cf=If[IntegerQ[s],{1,1},ContinuedFraction[ s][[2]]];len=Length[cf];OddQ[len]&&cf[[(len+1)/2]] == cf[[(len-1)/2]]==4]; Select[Range[5500],cf4Q] (* Harvey P. Dale, Jul 28 2021 *)

Extensions

a(1) corrected by T. D. Noe, Apr 03 2014

A031418 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 5.

Original entry on oeis.org

73, 373, 449, 565, 610, 757, 1021, 1145, 1193, 1594, 1669, 1906, 2053, 2074, 2138, 2314, 2477, 2593, 2861, 3065, 3145, 4129, 4346, 4373, 4469, 4498, 4721, 5018, 5114, 5386, 5741, 6025, 6317, 6617, 6737, 6925, 7241, 7489, 7522, 7897, 7978, 8017, 8186, 8314
Offset: 1

Views

Author

Keywords

Examples

			The simple continued fraction expansion of sqrt(73) = [8, 1, 1, 5, 5, 1, 1, 16, ...] of odd period 7 with a pair of central terms both equal to 5. Another example is sqrt(373) = [19, 3, 5, 5, 3, 38, ...] of odd period 5 with a pair of central terms both equal to 5. - _Michael Somos_, Apr 03 2014
		

Crossrefs

Subsequence of A003814.

Programs

  • Mathematica
    opct5Q[n_]:=Module[{s=Sqrt[n],cf,len},If[IntegerQ[s],cf={1,1}, cf= ContinuedFraction[s][[2]]];len=Length[cf];OddQ[len] && cf[[Floor[len/2]]] == cf[[Ceiling[len/2]]]==5]; Select[Range[10000],opct5Q] (* Harvey P. Dale, Feb 22 2013 *)

Extensions

Corrected and extended by Harvey P. Dale, Feb 22 2013

A031419 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 6.

Original entry on oeis.org

109, 281, 865, 922, 1277, 1613, 1769, 1933, 2161, 2341, 2789, 3098, 3653, 3961, 4285, 4457, 5065, 5153, 5713, 5858, 5954, 6101, 6458, 6554, 6709, 7129, 7349, 7681, 8237, 8941, 9242, 9305, 9677, 10177, 10498, 10565, 10693, 10762, 11162, 11365, 11698
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A003814.

Programs

  • Mathematica
    n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 6 && c[[2, (len + 1)/2 - 1]] == 6, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014; corrected by Georg Fischer, Jun 23 2019 *)

Extensions

a(1) corrected by T. D. Noe, Apr 04 2014
a(1) = 10 removed by Georg Fischer, Jun 23 2019

A031420 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 7.

Original entry on oeis.org

349, 778, 1105, 1237, 1306, 1565, 1721, 2473, 3361, 3706, 3889, 4133, 4985, 5261, 5545, 6217, 6841, 6929, 7165, 7253, 7418, 7754, 8021, 8273, 8369, 8629, 9089, 9274, 9461, 10034, 10229, 10333, 10729, 11245, 11657, 12077, 12842, 12941, 13385, 13730, 14314
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A003814.

Programs

  • Mathematica
    n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 7, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014 *)
    cf7Q[n_]:=Module[{s=Sqrt[n],cf,len},cf=If[IntegerQ[s],{0}, ContinuedFraction[ s] [[2]]];len=Length[cf];OddQ[len]&&Count[Take[cf,{(len+1)/2-1,(len+1)/2+1}],7]>1]; Select[Range[15000],cf7Q]//Quiet (* Harvey P. Dale, Sep 14 2016 *)

Extensions

Initial erroneous term 50 removed by T. D. Noe, Apr 04 2014

A031421 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 8.

Original entry on oeis.org

509, 1450, 2237, 2425, 3946, 4778, 5189, 5473, 5618, 5914, 6445, 6761, 7417, 8185, 9178, 9938, 10133, 10426, 10529, 10826, 10933, 11441, 11861, 12074, 12289, 12506, 12829, 13273, 14653, 14765, 15241, 16217, 16586, 16837, 17090, 17989, 18385, 18650, 18778
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A003814.

Programs

  • Mathematica
    n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 8 && c[[2, (len + 1)/2 - 1]] == 8, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014; adapted by Georg Fischer, Jun 23 2019 *)

Extensions

a(1) corrected by T. D. Noe, Apr 04 2014
Data adapted to new definition by Georg Fischer, Jun 23 2019
Previous Showing 11-19 of 19 results.