cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A005516 Number of n-bead bracelets (turnover necklaces) with 12 red beads.

Original entry on oeis.org

1, 1, 7, 19, 72, 196, 561, 1368, 3260, 7105, 14938, 29624, 56822, 104468, 186616, 322786, 544802, 896259, 1444147, 2278640, 3532144, 5380034, 8070400, 11926928, 17393969, 25042836, 35638596, 50152013, 69855536
Offset: 12

Views

Author

Keywords

Comments

From Vladimir Shevelev, Apr 23 2011: (Start)
Also number of non-equivalent (turnover) necklaces of 12 beads each of them painted by one of n colors.
The sequence solves the so-called Reis problem about convex k-gons in case k=12 (see our comment to A032279). (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=12 of A052307.

Programs

  • Mathematica
    k = 12; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    k=12;CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[k/2+1])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)

Formula

Let s(n,k,d) = 1, if n==k (mod d), s(n,k,d) = 0, otherwise. Then a(n) = s(n,0,12)/6 + (n-6)*s(n,0,6)/72 + (n-4)*(n-8)*s(n,0,4)/384 + (n-3)*(n-6)*(n-9)*s(n,0,3)/1944 + (3840*C(n-1,11) + (n+1)*(n-2)*(n-4)*(n-6)*(n-8)*(n-10))/92160, if n is even; a(n) = (n-3)*(n-6)*(n-9)*s(n,0,3)/1944 + (3840*C(n-1,11) + (n-1)*(n-3)*(n-5)*(n-7)*(n-9)*(n-11))/92160, if n is odd. - Vladimir Shevelev, Apr 23 2011
From Herbert Kociemba, Nov 04 2016: (Start)
G.f.: 1/2*x^12*((1+x)/(1-x^2)^7 + 1/12*(1/(-1+x)^12 + 1/(-1+x^2)^6 + 2/(-1+x^3)^4 - 2/(-1+x^4)^3 + 2/(-1+x^6)^2 - 4/(-1+x^12))).
G.f.: k=12, x^k*((1/k)*(Sum_{d|k} phi(d)*(1 - x^d)^(-k/d)) + (1 + x)/(1 -x^2)^floor((k+2)/2))/2. (End)

Extensions

Sequence extended and description corrected by Christian G. Bower

A228707 G.f.: (1-3*x+5*x^2-5*x^3+5*x^4-5*x^5+5*x^6-3*x^7+x^8)/((1-x)^4*(1+x^4)*(1+x^2)^2).

Original entry on oeis.org

1, 1, 1, 3, 6, 8, 10, 16, 24, 29, 35, 47, 61, 72, 84, 104, 127, 145, 165, 195, 228, 256, 286, 328, 374, 413, 455, 511, 571, 624, 680, 752, 829, 897, 969, 1059, 1154, 1240, 1330, 1440, 1556, 1661, 1771, 1903, 2041, 2168, 2300, 2456, 2619, 2769
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2013

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x+5*x^2-5*x^3+5*x^4-5*x^5+5*x^6-3*x^7+x^8)/((1-x)^4*(1+x^4)*(1+x^2)^2))); // Vincenzo Librandi, Sep 07 2013
  • Mathematica
    CoefficientList[Series[(1 - 3 x + 5 x^2 - 5 x^3 + 5 x^4 - 5 x^5 + 5 x^6 - 3 x^7 + x^8) / ((1 - x)^4 (1 + x^4) (1 + x^2)^2), {x, 0, 50}],x] (* Vincenzo Librandi, Sep 07 2013 *)

Formula

G.f.: (1-x+x^2)*(1-2 *x+2*x^2-x^3+2*x^4-2*x^5+x^6)/((1+x^2)^2*(1-x)^4*(1+x^4)).

A143654 Array T(n,k) read by rows: number of binary bracelets with n beads, k of them 0, with 00 prohibited, (n >= 2, 0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 4, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 7, 8, 3, 1, 1, 1, 5, 8, 10, 5, 1, 1, 1, 6, 10, 16, 10, 4, 1, 1, 1, 6, 12, 20, 16, 7, 1, 1, 1, 7, 14, 29, 26, 16, 4, 1, 1, 1, 7, 16, 35, 38, 26, 8, 1, 1, 1, 8, 19, 47, 57, 50
Offset: 2

Views

Author

Washington Bomfim, Aug 28 2008

Keywords

Comments

The initial columns give A057427, A057427, A004526, A069905, A005232, A032279, A005513, A032280, A005514, A032281, A005515, A032282, A005516. Row sums give A129526.
A binary bracelet with n beads, k of them 0, with 00 prohibited has from 0 to floor(n/2) beads 0, i.e., 0 <= k <= floor(n/2). If n is even, the bracelet 0101...01 with n/2 beads of each kind does not have 00 and we cannot change any 1 of it to a 0. If n is odd we cannot change a 1 to a 0 in the bracelet 0101...011 with (n-1)/2 beads 0.
The number of binary bracelets with n beads, 0 <= k <= floor(n/2) of them 0 with 00 prohibited, is equal to the number of binary bracelets with n-k beads, k of them 0. See below.
Let B be a binary bracelet with n-k beads, k of them 0. If we insert one 1 (circularly) after a 0 of B, we obtain a bracelet with n-k+1 beads, k of them 0.
If we do this insertion k times, each time after a distinct 0 of B, we obtain a bracelet with n = n-k+k beads, k of them 0, with 00 prohibited.
On the contrary, Let B be a binary bracelet with n beads, k of them 0, with 00 prohibited. If we remove from B one 1 that is after a 0, we obtain a bracelet of n-1 beads, k of them 0. (If not and we undo the removal, the configuration obtained cannot be a bracelet and this is absurd.) If we repeat this removal k times, after each distinct bead 0, we obtain a bracelet with n-k beads, k of them 0.

Examples

			Array begins
1 1
1 1
1 1 1
1 1 1
1 1 2 1
1 1 2 1
1 1 3 2 1
1 1 3 3 1
1 1 4 4 3 1
...
A129526(10) = A057427(10) + A057427(9) + A004526(8) + A069905(7) + A005232(6) +
A032279(5) = 1+1+4+4+3+1 = 14.
		

Crossrefs

Previous Showing 11-13 of 13 results.