cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-62 of 62 results.

A111505 Right half of Pascal's triangle (A007318) with zeros.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 3, 1, 0, 0, 6, 4, 1, 0, 0, 0, 10, 5, 1, 0, 0, 0, 20, 15, 6, 1, 0, 0, 0, 0, 35, 21, 7, 1, 0, 0, 0, 0, 70, 56, 28, 8, 1, 0, 0, 0, 0, 0, 126, 84, 36, 9, 1, 0, 0, 0, 0, 0, 252, 210, 120, 45, 10, 1, 0, 0, 0, 0, 0, 0, 462, 330, 165
Offset: 0

Views

Author

Philippe Deléham, Nov 16 2005

Keywords

Comments

A034869 is the version without zeros.

Examples

			Triangle begins:
1;
0, 1;
0, 2, 1;
0, 0, 3, 1;
0, 0, 6, 4, 1;
0, 0, 0, 10, 5, 1;
0, 0, 0, 20, 15, 6, 1;
0, 0, 0, 0, 35, 21, 7, 1;
0, 0, 0, 0, 70, 56, 28, 8, 1;
0, 0, 0, 0, 0, 126, 84, 36, 9, 1;
0, 0, 0, 0, 0, 252, 210, 120, 45, 10, 1;
0, 0, 0, 0, 0, 0, 462, 330, 165, 55, 11, 1;
0, 0, 0, 0, 0, 0, 924, 792, 495, 220, 66, 12, 1;
0, 0, 0, 0, 0, 0, 0, 1716, 1287, 715, 286, 78, 13, 1;
0, 0, 0, 0, 0, 0, 0, 3432, 3003, 2002, 1001, 364, 91, 14, 1;
		

Crossrefs

Formula

Sum_{n, n>=k} T(n, k) = A001700(k).
Sum_{k =0..2*n} T(2*n, k) = A032443(n).
Sum_{k=0..2*n+1} T(2*n+1, k) = 4^n = A000302(n).
Sum_{k=0..2*n} T(2*n, k)^2 = A036910(n).
Sum_{k=0..2*n+1} T(2*n+1, k)^2 = C(4*n+1, 2*n) = A002458(n) . Paul D. Hanna

A367548 a(n) = Sum_{k = 0..n} binomial(-n, k) * 2^(n - k).

Original entry on oeis.org

1, 1, 3, -2, 19, -54, 222, -804, 3075, -11630, 44458, -170268, 654766, -2524508, 9758556, -37802952, 146724579, -570450078, 2221230066, -8660901612, 33811886394, -132148736148, 517012584036, -2024632609272, 7935337877454, -31126450260204, 122183595168612
Offset: 0

Views

Author

Peter Luschny, Nov 29 2023

Keywords

Crossrefs

Cf. A032443.

Programs

  • Maple
    seq(add(binomial(-n, k)*2^(n - k), k = 0..n), n = 0..26);
  • Mathematica
    Table[Sum[Binomial[-n,k]2^(n-k),{k,0,n}],{n,0,30}] (* Harvey P. Dale, Apr 03 2024 *)

Formula

a(n) = 4^n*3^(-n) - binomial(-n, n+1) * hypergeom([1, 2*n+1], [n + 2], -1/2) / 2.
a(n) = [x^n] (3 + 12*x + sqrt(4*x + 1)*(4*x + 3))/(6 + 16*x - 32*x^2).
D-finite with recurrence 9*n*a(n) +6*(6*n-7)*a(n-1) +16*(-n-4)*a(n-2) +32*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jan 11 2024
From Seiichi Manyama, Jul 30 2025: (Start)
a(n) = [x^n] 1/((1-2*x) * (1+x)^n).
a(n) = Sum_{k=0..n} (-1)^k * 3^(n-k) * binomial(2*n,k). (End)
Previous Showing 61-62 of 62 results.