cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A382219 Product of the largest and smallest exponents in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 9, 4, 1, 1, 2, 1, 1, 1, 16, 1, 2, 1, 2, 1, 1, 1, 3, 4, 1, 9, 2, 1, 1, 1, 25, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 4, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 36, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 16, 1, 1, 2, 1, 1, 1, 3, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 19 2025

Keywords

Comments

The asymptotic density of the occurrences of k = 1, 2, ... in this sequence is 1/zeta(2) for k = 1 and 1/zeta(k+1) - 1/zeta(k) for k >= 2, and the asymptotic mean of this sequence is A033150, the same densities and mean as in A051903, since a(n) = A051903(n) for nonpowerful numbers n (A052485) whose asymptotic density is 1. - Amiram Eldar, Mar 28 2025

Crossrefs

Programs

  • Mathematica
    Table[Max @@ (#[[2]] & /@ FactorInteger[n]) Min @@ (#[[2]] & /@ FactorInteger[n]), {n, 90}]
  • PARI
    a(n) = if(n == 1, 1, my(e = factor(n)[,2]); vecmin(e) * vecmax(e)); \\ Amiram Eldar, Mar 28 2025

Formula

If n = Product (p_j^k_j) then a(n) = min{k_j} * max{k_j}.
a(n) = A051903(n) * A051904(n) for n > 1.

A384659 Numbers k such that A384655(k)/k > A384655(m)/m for all m < k.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 48, 72, 96, 144, 288, 432, 576, 720, 1440, 2160, 2880, 4320, 8640, 17280, 21600, 25920, 30240, 43200, 60480, 120960, 151200, 181440, 241920, 302400, 604800, 907200, 1209600, 1814400, 3326400, 3628800, 5443200, 6350400, 6652800, 9979200
Offset: 1

Views

Author

Amiram Eldar, Jun 06 2025

Keywords

Comments

All the terms above 2 are nonsquarefree (A013929).

Examples

			The first values of A384655(k)/k, for k = 1..8, are {0, 1/2, 1/3, 3/4, 1/5, 2/3, 1/7, 7/8}. The record values, 0, 1/2, 3/4 and 7/8, occur at k = 1, 2, 4 and 8, the first 4 terms of this sequence.
		

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    f[p_, e_, k_] := p^e - If[e < k, 0, p^(e - k)]; r[n_] := Module[{fct = FactorInteger[n], emax, s}, emax = Max[fct[[;; , 2]]]; s = emax * n; Do[s -= Times @@ (f[#1, #2, k] & @@@ fct), {k, 1, emax}]; s/n]; r[1] = 0;
    seq[lim_] := Module[{s = {}, rm = -1, r1}, Do[r1 = r[k]; If[r1 > rm, rm = r1; AppendTo[s, k]], {k, 1, lim}]; s]; seq[10^5]
  • PARI
    r(n) = if(n == 1, 0, my(f = factor(n), p = f[,1], e = f[,2], emax = vecmax(e), s = emax*n); for(k = 1, emax, s -= prod(i = 1, #p, p[i]^e[i] - if(e[i] < k, 0, p[i]^(e[i]-k)))); s/n);
    list(lim) = {my(rm = -1, r1); for(k = 1, lim, r1 = r(k); if(r1 > rm, rm = r1; print1(k, ", ")));}

Formula

Limit_{n->oo} A384655(a(n))/a(n) = c, where c is Niven's constant (A033150).

A242972 Decimal expansion of a constant related to Niven's constant.

Original entry on oeis.org

8, 9, 2, 8, 9, 4, 5, 7, 1, 4, 5, 1, 2, 6, 6, 0, 9, 0, 4, 5, 7, 0, 0, 9, 4, 3, 0, 0, 2, 2, 4, 2, 7, 0, 9, 3, 3, 6, 0, 5, 0, 4, 0, 8, 5, 9, 4, 4, 5, 6, 8, 4, 3, 2, 6, 4, 7, 4, 9, 5, 6, 7, 9, 0, 7, 4, 3, 7, 2, 7, 3, 4, 3, 8, 7, 2, 7, 6, 5, 6, 4, 9, 4, 9, 0, 6, 6, 9, 6, 8, 8, 7, 3, 6, 9, 4, 1, 7, 8, 3
Offset: 0

Views

Author

Jean-François Alcover, May 28 2014

Keywords

Examples

			0.89289457145126609045700943002242709336...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, p. 113.

Crossrefs

Programs

  • Mathematica
    digits = 100; k0 = 100; dk = 50; $MaxExtraPrecision = 12*digits; z[n_?NumericQ] := Zeta[Prime[n // Floor]]; Clear[s]; s[k_] := s[k] = NSum[z[n] - 1, {n, 1, k}, WorkingPrecision -> digits + 10, NSumTerms -> 10*digits]*(1 + NSum[Zeta[n] - 1, {n, k + 1, Infinity}, WorkingPrecision -> digits + 10]); s[k0] ; s[k = k0 + dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits], Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First

Formula

Equals Sum_(p prime) (zeta(p)-1).
Equals Sum_{k>=2} Sum_{p prime} 1/k^p. - Amiram Eldar, Aug 21 2020

A245055 Decimal expansion of 'tau' (named sigma_2 by C. Pomerance), a constant associated with the expected number of random elements to generate a finite abelian group.

Original entry on oeis.org

1, 7, 4, 2, 6, 5, 2, 3, 1, 1, 0, 3, 3, 5, 1, 5, 4, 3, 5, 2, 4, 8, 9, 0, 4, 8, 0, 6, 9, 4, 1, 2, 9, 8, 6, 4, 1, 1, 5, 4, 4, 3, 7, 9, 8, 9, 8, 3, 8, 1, 0, 4, 6, 2, 8, 1, 4, 2, 9, 0, 4, 7, 9, 5, 7, 4, 6, 5, 5, 5, 0, 3, 8, 7, 0, 0, 8, 1, 3, 5, 0, 8, 6, 8, 0, 5, 8, 1, 4, 7, 4, 1, 7, 5, 2, 4, 7, 8, 8, 1, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 22 2014

Keywords

Examples

			1.7426523110335154352489048069412986411544379898381...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 273.

Crossrefs

Programs

  • Mathematica
    digits = 101; max = 400; c = 1/Product[N[Zeta[k], digits + 100], {k, 2, max}]; p[j_] := Product[N[Zeta[k], digits + 100], {k, 2, j}]; tau = Sum[1 - (1 - 2^-j)*c*p[j], {j, 1, max}]; RealDigits[tau, 10, digits ] // First
  • PARI
    default(realprecision,120); suminf(j=1, 1-(1-2^(-j))*prodinf(k=j+1, 1/zeta(k))) \\ Vaclav Kotesovec, Oct 22 2014

Formula

tau = sum_{j >= 1} (1-(1-2^(-j))*prod_{k >= j+1} zeta(k)^(-1)).
tau = sum_{j >= 1} (1-(1-2^(-j))*c*prod_{k = 2..j} zeta(k)), where c is A068982.

A335532 Decimal expansion of the asymptotic value of the second raw moment of the maximal exponent in the prime factorizations of n (A051903).

Original entry on oeis.org

4, 3, 0, 1, 3, 0, 2, 4, 0, 0, 3, 1, 3, 3, 6, 6, 5, 9, 9, 9, 8, 0, 6, 8, 9, 3, 4, 0, 4, 1, 8, 7, 7, 5, 7, 9, 9, 2, 2, 9, 8, 9, 1, 2, 9, 7, 6, 3, 4, 7, 7, 4, 3, 1, 6, 4, 7, 3, 8, 6, 9, 9, 1, 7, 2, 7, 2, 4, 8, 1, 5, 9, 3, 0, 3, 2, 5, 0, 3, 8, 7, 7, 0, 0, 3, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 18 2020

Keywords

Comments

Let H(n) = A051903(n) be the maximal exponent in the prime factorizations of n. The asymptotic density of the numbers whose maximal exponent is k is d(k) = 1/zeta(k+1) - 1/z(k). For example, k=1 corresponds to the squarefree numbers (A005117), and k=2 corresponds to the cubefree numbers which are not squarefree (A067259). The asymptotic mean of H is = Sum_{k>=1} k*d(k) = 1 + Sum_{j>=2} (1 - 1/zeta(j)) = 1.705211... which is Niven's constant (A033150). The second raw moment of the distribution of maximal exponents is = Sum_{k>=1} k^2*d(k), whose simplified formula in terms of zeta functions is given in the FORMULA section.
The second central moment, or variance, of H is - ^2 = 4.3013024003... - 1.7052111401...^2 = 1.3935573679... and the standard deviation is sqrt( - ^2) = 1.1804903082...

Examples

			4.30130240031336659998068934041877579922989129763477...
For the numbers n=1..2^20, the values of H(n) = A051903(n) are in the range [0..20]. Their mean value is 894015/524288 = 1.705198..., their second raw moment is 140939/32768 = 4.301116..., and their standard deviation is sqrt(383019202687/274877906944) = 1.180430...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, pp. 112-113.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Sum[(2*j - 1)*(1 - 1/Zeta[j]), {j, 2, 400}], 10, 100][[1]]

Formula

Equals lim_{n->oo} (1/n) * Sum_{k=1..n} A051903(k)^2.
Equals 1 + Sum_{j>=2} (2*j-1) * (1 - 1/zeta(j)).
Previous Showing 31-35 of 35 results.