cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A162626 If 0 <= n <= 3 then a(n) = n(n+1)(n+2)/3, if n >= 4 then a(n) = n(n^2+5)/3.

Original entry on oeis.org

0, 2, 8, 20, 28, 50, 82, 126, 184, 258, 350, 462, 596, 754, 938, 1150, 1392, 1666, 1974, 2318, 2700, 3122, 3586, 4094, 4648, 5250, 5902, 6606, 7364, 8178, 9050, 9982, 10976, 12034, 13158, 14350, 15612, 16946, 18354, 19838, 21400, 23042, 24766, 26574
Offset: 0

Views

Author

Omar E. Pol, Jul 07 2009, Jul 13 2009

Keywords

Comments

One way to generalize the magic number sequence in A018226.
See also A130598 and A162630.

Crossrefs

Formula

From Daniel Forgues, May 03 2011: (Start)
If 0 <= n <= 3 then a(n) = 2 T_n, otherwise a(n) = 2 (T_n - t_{n-1}), where T_n is the n-th tetrahedral number, t_n the n-th triangular number.
G.f.: (2*x*(1 - 6*x^3 + 14*x^4 - 11*x^5 + 3*x^6))/(1 - x)^4, n >= 0.
(End)
a(n) = n*(n^2+5)/3 + (4*n-6)*A171386(n). - Omar E. Pol, Aug 14 2013

Extensions

Edited by N. J. A. Sloane, Jul 18 2009

A219239 Double magic numbers (in physics).

Original entry on oeis.org

4, 10, 16, 22, 28, 30, 36, 40, 48, 52, 56, 58, 70, 78, 84, 90, 100, 102, 110, 128, 132, 134, 146, 154, 164, 176, 208, 252
Offset: 1

Views

Author

Wolfdieter Lang, Dec 12 2012

Keywords

Comments

For the magic numbers see A018226.
An atomic nucleus is called double magic if Z (number of protons in an atomic nucleus, atomic number) and N (number of neutrons) are both magic numbers. The nucleon or mass number (forget the Z electrons) is A = Z + N.
Each number a(n) is obtained in only one way as a sum of two (possibly equal) magic numbers. Only 28 is magic and double magic.

Examples

			Tin-132 is a double magic radionuclide (unstable isotope) with nucleon number A = 132 = a(21), Z = 50 and N = 82. Similarly for tin-100 with Z = N = 50. The stable primordial nuclide barium-132 is not double magic, because it has Z = 56 and N = 76.
		

Crossrefs

Formula

a(n) is the sum of two numbers from [2, 8, 20, 28, 50, 82, 126] (the magic numbers A018226).

A230434 Magic numbers of nucleons. Another version of A018226, with 34 inserted.

Original entry on oeis.org

2, 8, 20, 28, 34, 50, 82, 126
Offset: 1

Views

Author

Omar E. Pol, Oct 22 2013

Keywords

Comments

Union of 34 and A018226.

Crossrefs

A369524 Array read by antidiagonals: T(n,k) is the number of length n necklaces using at most k colors with black beads always occurring in runs of even length.

Original entry on oeis.org

0, 1, 1, 2, 2, 0, 3, 4, 2, 1, 4, 7, 6, 3, 0, 5, 11, 14, 11, 3, 1, 6, 16, 28, 34, 18, 5, 0, 7, 22, 50, 87, 81, 38, 5, 1, 8, 29, 82, 191, 276, 227, 70, 8, 0, 9, 37, 126, 373, 759, 983, 615, 151, 10, 1, 10, 46, 184, 666, 1782, 3301, 3500, 1789, 314, 15, 0, 11, 56, 258, 1109, 3717, 9180, 14545, 13007, 5206, 684, 19, 1
Offset: 1

Views

Author

Maxim Karimov and Vladislav Sulima, Jan 25 2024

Keywords

Comments

Equivalently, black beads can be considered to have length 2, while all other beads have length 1.
Column k is the "CIK" (necklace, indistinct, unlabeled) transform of {k-1, 1, 0, 0, 0, ...} (see C. Bower link). - Andrew Howroyd, Jan 25 2024

Examples

			n\k| 1  2   3     4      5       6       7        8         9 ...
---+-----------------------------------------------------------------
 1 | 0  1   2     3      4       5       6        7         8 ...A001477
 2 | 1  2   4     7     11      16      22       29        37 ...A000124
 3 | 0  2   6    14     28      50      82      126       184 ...A033547
 4 | 1  3  11    34     87     191     373      666      1109
 5 | 0  3  18    81    276     759    1782     3717      7080
 6 | 1  5  38   227    983    3301    9180    22163     47997
 7 | 0  5  70   615   3500   14545   48210   135155    333400
 8 | 1  8 151  1789  13007   66166  260113   844691   2370229
 9 | 0 10 314  5206  48820  304970 1423790  5358934  17110376
10 | 1 15 684 15490 186195 1425453 7897006 34438104 125093109
...
		

Crossrefs

Columns 1..2 are A000035(n-1), A000358.
Rows 1..3 are A001477(k-1), A000124(k-1), A033547(k-1).
Cf. A000010 (phi), A075195 (all beads of same length).

Programs

  • MATLAB
    function [res] = num2(n,k)
    res=0;
    for d=divisors(n)
        s=(k-1)^d;
        for i=1:floor(d/2)
            s=s + nchoosek(d-i-1,i-1) * d/i * (k-1)^(d-2*i);
        end
        res= res + eulerPhi(n/d) * s;
    end
    res=res/n;
    end
    
  • PARI
    T(n,k) = sum(d=1, n, eulerphi(d)*polcoef(log(1/(1 - (k-1)*x^d - x^(2*d)) + O(x*x^n)), n)/d)  \\ Andrew Howroyd, Jan 25 2024

Formula

T(n,k) = (1/n) * Sum_{d|n} phi(n/d) * ((k-1)^d + Sum_{i=1..floor(d/2)} binomial(d-i-1,i-1) * d/i * (k-1)^(d-2*i)), where phi(n) = A000010.
G.f. of column k: Sum_{d>=1} (phi(d)/d) * log(1/(1 - (k-1)*x^d - x^(2*d))). - Andrew Howroyd, Jan 25 2024
Previous Showing 11-14 of 14 results.