cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A046255 a(1) = 5; a(n) is smallest number >= a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

5, 9, 9, 21, 53, 67, 71, 87, 87, 91, 117, 161, 187, 213, 363, 419, 501, 537, 543, 739, 879, 1101, 1329, 1391, 1641, 1939, 2093, 2109, 2331, 2557, 2639, 2697, 2863, 3441, 3441, 4413, 4461, 4479, 4557, 5489, 6033, 6267, 6351, 6973, 7181, 7459, 7679, 8113, 8241
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Maple
    R:= 5: p:= 5: x:= 5:
    for count from 2 to 100 do
      for y from x by 2 do
        if isprime(10^(1+ilog10(y))*p+y) then
          R:= R, y; p:= 10^(1+ilog10(y))*p+y; x:= y;
          break
        fi
    od od:
    R; # Robert Israel, Nov 22 2020
  • Mathematica
    a[1] = 5; a[n_] := a[n] = Block[{k = a[n - 1], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 49}] (* Robert G. Wilson v, Aug 05 2005 *)
  • Python
    from sympy import isprime
    def aupton(terms):
      alst, astr = [5], "5"
      while len(alst) < terms:
        an = alst[-1]
        while an%5 ==0 or not isprime(int(astr + str(an))): an += 2
        alst, astr = alst + [an], astr + str(an)
      return alst
    print(aupton(49)) # Michael S. Branicky, May 09 2021

A046259 a(1) = 9; a(n) is smallest number >= a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

9, 11, 21, 21, 23, 33, 37, 93, 119, 129, 133, 147, 293, 321, 429, 433, 497, 627, 661, 897, 1161, 1187, 1197, 1711, 1769, 1807, 2097, 2099, 4143, 4149, 4197, 4587, 4587, 5629, 5711, 5889, 6153, 6351, 6399, 6511, 6651, 7179, 7563, 7661, 8071, 8163, 9663
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 9; a[n_] := a[n] = Block[{k = a[n - 1], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v, Aug 05 2005 *)

A069602 a(1) = 1; a(n) = smallest composite number such that the juxtaposition a(1)a(2)...a(n) is a prime.

Original entry on oeis.org

1, 9, 9, 9, 21, 9, 51, 21, 9, 57, 301, 51, 51, 33, 209, 111, 87, 153, 121, 87, 63, 39, 77, 27, 57, 81, 129, 147, 111, 21, 147, 321, 69, 93, 153, 621, 817, 129, 81, 803, 129, 153, 451, 171, 717, 801, 959, 459, 187, 291, 231, 533, 399, 291, 289, 869, 489, 171, 381, 667, 21
Offset: 1

Views

Author

Amarnath Murthy, Mar 26 2002

Keywords

Examples

			a(5) = 21 and the number 199921 is a prime.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{k = 3, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[PrimeQ[k] || !PrimeQ[FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 61}] (* Robert G. Wilson v, Aug 05 2005 *)
    nxt[{jx_,a_}]:=Module[{c=9},While[PrimeQ[c]||CompositeQ[jx*10^IntegerLength[c]+c],c+=2];{jx*10^IntegerLength[c]+c,c}]; NestList[nxt,{1,1},60][[;;,2]] (* Harvey P. Dale, Feb 08 2025 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 31 2003

A069604 a(1) = 1; for n>1, a(n) = smallest number with all odd digits giving a prime in concatenation with the previous terms.

Original entry on oeis.org

1, 1, 3, 11, 1, 3, 3, 53, 13, 39, 9, 3, 399, 11, 9, 133, 3, 11, 51, 111, 13, 53, 31, 3, 173, 1, 317, 519, 579, 1, 573, 357, 5111, 39, 51, 73, 3317, 1977, 5173, 579, 357, 359, 9, 57, 3991, 959, 951, 7, 111, 1959, 39, 191, 3357, 3151, 3137, 577, 117, 1353, 951, 153, 99
Offset: 1

Views

Author

Amarnath Murthy, Mar 26 2002

Keywords

Examples

			a(5) = 1 and the number 113111 is a prime.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ Union[ Mod[ IntegerDigits[k], 2]] != {1} || !PrimeQ[ FromDigits[ Join[ Flatten[c], IntegerDigits[k]]]], k = k + 1]; k]; Table[ a[n], {n, 61}] (* corrected by Jason Yuen, Jun 22 2025 *)

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

A242042 Expansion of (b(q) * c(q^3) / 3)^2 in powers of q where b(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, -6, 9, 14, -54, 36, 65, -162, 126, 148, -438, 252, 344, -756, 513, 546, -1458, 756, 1022, -2064, 1332, 1352, -3510, 1764, 2198, -4374, 2808, 2710, -6804, 3276, 4161, -7992, 4914, 4816, -11826, 5616, 6860, -13188, 8190, 7658, -18576, 8892, 10804, -20412
Offset: 2

Views

Author

Michael Somos, Aug 12 2014

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
In McKay and Sebbar on page 274 in equation (8.2) the last term on the right side is a multiple of the g.f.

Examples

			G.f. = q^2 - 6*q^3 + 9*q^4 + 14*q^5 - 54*q^6 + 36*q^7 + 65*q^8 - 162*q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(9), 4), 19); A[3] - 6*A[4] + 9*A[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ q^2 (QPochhammer[ q] QPochhammer[ q^9])^6 / QPochhammer[ q^3]^4, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<2, 0, n-=2; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^9 + A))^6 / eta(x^3 + A)^4, n))};
    

Formula

Expansion of (eta(q) * eta(q^9))^6 / eta(q^3)^4 in powers of q.
Euler transform of period 9 sequence [ -6, -6, -2, -6, -6, -2, -6, -6, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: x^2 * Product_{k>0} (1 - x^k)^6 * (1 - x^(9*k))^6 / (1 - x^(3*k))^4.
Convolution square of A106401.
a(3*n) = -6 * A198956(n). a(3*n + 1) = 9 * A033690(n).

A239547 a(1) = 1; a(n) is smallest number > a(n-1) such that the juxtaposition a(n)a(n-1)...a(1) is a prime.

Original entry on oeis.org

1, 3, 4, 5, 7, 14, 21, 43, 56, 96, 141, 178, 180, 198, 263, 271, 315, 347, 352, 471, 530, 565, 588, 707, 711, 793, 812, 850, 887, 952, 1083, 1214, 1218, 1266, 1564, 1661, 1686, 1744, 1976, 2047, 2066, 2166, 2268, 2412, 2740, 2777, 2895, 2905, 3056, 3058, 3293
Offset: 1

Views

Author

Paolo P. Lava, Mar 21 2014

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    S:=proc(s) local w; w:=convert(s, base, 10); sum(w[j], j=1..nops(w)); end:
    T:=proc(t) local w, x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
    P:=proc(q) local a, b, c, j, n; a:=1; j:=2; print(1);
    for n from 1 to q do b:=T(a); c:=j*10^b+a;
    if isprime(c) then a:=j*10^b+a; print(j); fi;
    j:=j+1; od; print(); end: P(10^10);
Previous Showing 11-16 of 16 results.