cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A224326 Number of partitions of n into 3 distinct triangular numbers.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 1, 1, 3, 2, 0, 2, 1, 1, 4, 1, 3, 1, 1, 2, 2, 2, 1, 4, 1, 1, 4, 1, 2, 4, 1, 2, 2, 2, 2, 3, 2, 2, 4, 1, 2, 3, 2, 3, 4, 1, 2, 4, 2, 3, 3, 2, 1, 5, 2, 0, 5, 1, 4, 5, 2, 4, 2, 2
Offset: 0

Views

Author

Alex Ratushnyak, Apr 03 2013

Keywords

Comments

Indices of zeros: 0 followed by A002243.

Crossrefs

Cf. A025436 (number of partitions of n into 3 distinct squares).
Cf. A002636 (allows nondistinct triangular numbers).

Programs

  • Mathematica
    nn = 150; tri = Table[n*(n + 1)/2, {n, 0, nn}]; t = Table[0, {tri[[-1]]}]; Do[s = tri[[i]] + tri[[j]] + tri[[k]]; If[s <= tri[[-1]], t[[s]]++], {i, nn}, {j, i + 1, nn}, {k, j + 1, nn}]; t = Join[{0}, t] (* T. D. Noe, Apr 05 2013 *)
  • Python
    TOP = 777
    for n in range(TOP):
      k = 0
      for x in range(TOP):
        s = x*(x+1)//2
        if s>n: break
        for y in range(x+1,TOP):
            sy = s + y*(y+1)//2
            if sy>n: break
            for z in range(y+1,TOP):
              sz = sy + z*(z+1)//2
              if sz>n: break
              if sz==n: k+=1
      print(str(k), end=',')

A244543 Expansion of phi(q^2) * (phi(q) + phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 3, 2, 3, 0, 2, 0, 3, 3, 4, 2, 2, 0, 0, 0, 3, 2, 5, 2, 4, 0, 2, 0, 2, 1, 4, 4, 0, 0, 0, 0, 3, 4, 6, 0, 5, 0, 2, 0, 4, 2, 0, 2, 2, 0, 0, 0, 2, 1, 7, 4, 4, 0, 4, 0, 0, 4, 4, 2, 0, 0, 0, 0, 3, 0, 4, 2, 6, 0, 0, 0, 5, 2, 4, 2, 2, 0, 0, 0, 4, 5, 6, 2, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Jun 29 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + 3*q^2 + 2*q^3 + 3*q^4 + 2*q^6 + 3*q^8 + 3*q^9 + 4*q^10 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[1] + A[2] + 3*A[3];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ {1, 2, 1, 0, -1, -2, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, 1, 2, 1, 0, -1, -2, -1][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A, B); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); B = subst(A, x, x^2); polcoeff( B * (A + B) / 2, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[0] + A[1] + 3*A[2];
    

Formula

Expansion of f(-q^3, -q^5)^2 * phi(q^2) / psi(-q) = f(-q^3, -q^5)^2 * chi(q^2)^2 / chi(-q) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [1, 2, -1, -2, -1, 2, 1, -2, ...].
Moebius transform is period 8 sequence [1, 2, 1, 0, -1, -2, -1, 0, ...].
a(2*n) = A244540(n). a(2*n + 1) = A113411(n). a(8*n + 1) = A112603(n). a(8*n + 3) = 2* A033761(n). a(8*n + 5) = a(8*n + 7) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi*(sqrt(2)+1)/4 = 1.896118... . - Amiram Eldar, Jun 08 2025

A244554 Expansion of phi(q) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -2, 1, 4, -2, 0, 1, -1, 4, -2, -2, 4, 0, 0, 1, 2, -1, -2, 4, 0, -2, 0, -2, 5, 4, -4, 0, 4, 0, 0, 1, -4, 2, 0, -1, 4, -2, 0, 4, 2, 0, -2, -2, 4, 0, 0, -2, 1, 5, -4, 4, 4, -4, 0, 0, -4, 4, -2, 0, 4, 0, 0, 1, 8, -4, -2, 2, 0, 0, 0, -1, 2, 4, -2, -2, 0, 0
Offset: 1

Views

Author

Michael Somos, Jun 30 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 - 2*q^3 + q^4 + 4*q^5 - 2*q^6 + q^8 - q^9 + 4*q^10 - 2*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[2] + A[3];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ {1, 0, -3, 0, 3, 0, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, 0, -3, 0, 3, 0, -1][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * (A - subst(A, x, x^2)) / 2, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[1] + A[2];
    

Formula

Expansion of q * f(-q, -q^7)^2 * phi(q) / psi(-q) = q * f(-q, -q^7)^2 * chi(q)^3 in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [1, -3, 3, 0, 3, -3, 1, -2, ...].
Moebius transform is period 8 sequence [1, 0, -3, 0, 3, 0, -1, 0, ...].
Convolution product of A244560 and A107635. Convolution product of A000122 and A143259.
a(n) = (A004018(n) - A033715(n)) / 2 = A243747(2*n).
a(2*n) = a(n). a(8*n + 3) = -2 * A033761(n). a(8*n + 5) = 4 * A053692(n). a(8*n + 7) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi*(1 - 1/sqrt(2))/2 = 0.460075... . - Amiram Eldar, Jun 08 2025

A245572 Expansion of phi(q) * phi(q^2) + 2 * phi(-q^2) * phi(q^4) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

3, 2, -2, 4, 6, 0, -4, 0, 6, 6, 0, 4, 12, 0, 0, 0, 6, 4, -6, 4, 0, 0, -4, 0, 12, 2, 0, 8, 0, 0, 0, 0, 6, 8, -4, 0, 18, 0, -4, 0, 0, 4, 0, 4, 12, 0, 0, 0, 12, 2, -2, 8, 0, 0, -8, 0, 0, 8, 0, 4, 0, 0, 0, 0, 6, 0, -8, 4, 12, 0, 0, 0, 18, 4, 0, 4, 12, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 25 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 3 + 2*q - 2*q^2 + 4*q^3 + 6*q^4 - 4*q^6 + 6*q^8 + 6*q^9 + 4*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 81);  3*A[1] + 2*A[2] - 2*A[3] + 4*A[4] + 6*A[5] - 4*A[7] + 6*A[9] + 6*A[10] + 4*A[12] + 12*A[13] + 4*A[16];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] + 2 EllipticTheta[ 3, 0, -q^2] EllipticTheta[ 3, 0, q^4], {q, 0, n}];
  • PARI
    {a(n) = my(A, p, e); if( n<1, 3*(n==0), A = factor(n); 2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, if( e>1, 3, -1), p%8>3, (1 + (-1)^e) / 2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^3 / (eta(x + A)^2 * eta(x^8 + A)^2) + 2 * eta(x^2 + A)^2 * eta(x^8 + A)^5 / (eta(x^4 + A)^3 * eta(x^16 + A)^2), n))};
    

Formula

a(n) = 2 * b(n) where b(n) is multiplicative with b(2) = -1, b(2^e) = 3 if e>1, b(p^e) = e+1 if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 if p == 5, 7 (mod 8).
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A226240.
a(2*n + 1) = 2 * A113411(n). a(4*n) = 3 * A033715(n). a(8*n + 1) = 2 * A112603(n). a(8*n = 3) = 4 * A033761(n). a(8*n + 5) = a(8*n = 7) = 0.

A255258 Expansion of q^2 * phi(q) * psi(q^16) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0
Offset: 2

Views

Author

Michael Somos, Feb 19 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q^2 + 2*q^3 + 2*q^6 + 2*q^11 + 3*q^18 + 2*q^19 + 2*q^22 + 4*q^27 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 89); A[3] + 2*A[4] + 2*A[7] + 2*A[12];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^8] / 2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^32 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^16 + A)), n))};
    

Formula

Expansion of eta(q^2)^5 * eta(q^32)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^16)) in powers of q.
Euler transform of period 32 sequence [ 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, 0, 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, -1, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 8^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A224609.
(-1)^n * a(n) = A227395(n).
a(4*n) = a(4*n + 1) = a(8*n + 7) = 0. a(4*n + 2) = A113411(n). a(8*n + 3) = 2 * A033761(n).

A027414 G.f. for Moebius transform is x * (1 + x) / (1 + x^4).

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 1, 2, 2, 2, 1, 1, 0, 1, 0, 2, 2, 3, 1, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 4, 0, 3, 0, 1, 0, 2, 2, 0, 1, 1, 0, 1, 1, 1, 2, 4, 2, 2, 0, 2, 0, 1, 2, 2, 1, 0, 0, 1, 1, 2, 0, 2, 1, 4, 0, 0, 1, 3, 2, 2, 1, 1, 0, 0, 1, 2, 3, 4, 1, 0, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 1, 2, 3, 3, 4, 0, 2, 1, 2, 0
Offset: 1

Views

Author

Keywords

Examples

			x + 2*x^2 + x^3 + 2*x^4 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + x^12 + ...
		

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ {1, 1, 0, 0, -1, -1, 0, 0} [[ Mod[d, 8, 1]]], {d, Divisors @ n}]] (* Michael Somos, Nov 16 2011 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -4, (d-1)%8\2 + 1)))} /* Michael Somos, Sep 20 2005 */

Formula

Moebius transform is period 8 sequence [1, 1, 0, 0, -1, -1, 0, 0, ...]. - Michael Somos, Sep 20 2005
G.f.: Sum_{k>0} x^k * (1 + x^k) / (1 + x^(4*k)). - Michael Somos, Sep 20 2005
a(8*n + 5) = 0. a(8*n + 3) = A033761(n). - Michael Somos, Nov 16 2011

A028572 Expansion of theta_3(z)*theta_3(2z) + theta_2(z)*theta_2(2z) in powers of q^(1/4).

Original entry on oeis.org

1, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 8, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 4, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 6, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 12, 2, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 4*x^3 + 2*x^4 + 2*x^8 + 4*x^11 + 4*x^12 + 2*x^16 + 4*x^19 + 4*x^24 + ...
1 + 4*q^(3/4) +2*q +2*q^2 +4*q^(11/4) +4*q^3 +2*q^4 + 4*q^(19/4) +4*q^6 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 105; max = Sqrt[terms] // Ceiling; s = Sum[x^(3*(n^2 + m^2) + 2*n*m), {n, -max, max}, {m, -max, max}]; CoefficientList[s, x][[1 ;; terms]] (* Jean-François Alcover, Dec 03 2015, using 2nd g.f. *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep( [3, 1; 1, 3], n)[n] * 2)} /* Michael Somos, Nov 20 2006 */
    
  • PARI
    {a(n) = if( n<1, n==0, if( n%4==1 || n%4==2, 0, 2 * sumdiv( n, d, kronecker( -2, d))))} /* Michael Somos, Mar 23 2012 */

Formula

Expansion of phi(x^4) * phi(x^8) + 4 * x^3 * psi(x^8) * psi(x^16) in powers of x where phi(), psi() are Ramanujan theta functions.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) (t/i) f(t) where q = exp(2 pi i t). - Michael Somos, Mar 23 2012
G.f.: Sum_{n,m} x^(3*(n^2 + m^2) + 2*n*m). - Michael Somos, Nov 20 2006
a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = 0. a(4*n) = A033715(n). a(8*n + 3) = 4 * A033761(n). - Michael Somos, Mar 23 2012

A129438 Expansion of (phi(q) * phi(q^2) + phi(-q^2) * phi(q^4)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 2, 2, 0, 0, 0, 2, 3, 0, 2, 4, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 6, 0, 0, 0, 0, 2, 0, 2, 4, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 0, 6, 2, 0, 2, 4, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Apr 14 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + 2*q^3 + 2*q^4 + 2*q^8 + 3*q^9 + 2*q^11 + 4*q^12 + 2*q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] + EllipticTheta[ 4, 0, q^2] EllipticTheta[ 3, 0, q^4]) / 2, {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep([1, 0; 0, 8], n)[n] + qfrep([3, 1; 1, 3], n)[n])};

Formula

Moebius transform is period 32 sequence [1, -1, 1, 2, -1, -1, -1, 0, 1, 1, 1, 2, -1, 1, -1, 0, 1, -1, 1, -2, -1, -1, -1, 0, 1, 1, 1, -2, -1, 1, -1, 0, ...].
a(4*n + 2) = a(8*n + 5) = a(8*n + 7) = 0.
a(n) = A125096(n) unless n=0. a(8*n + 1) = A112603(n). a(8*n + 3) = 2 * A033761(n).
a(2*n + 1) = A113411(n). a(4*n) = A033715(n). - Michael Somos, Nov 11 2015

A244544 Expansion of (phi(q) + phi(q^2))^2 / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 2, 0, 3, 4, 4, 2, 2, 2, 0, 0, 3, 4, 5, 2, 4, 0, 2, 0, 2, 4, 4, 4, 0, 2, 0, 0, 3, 4, 6, 0, 5, 2, 2, 0, 4, 4, 0, 2, 2, 2, 0, 0, 2, 2, 7, 4, 4, 2, 4, 0, 0, 4, 4, 2, 0, 2, 0, 0, 3, 4, 4, 2, 6, 0, 0, 0, 5, 4, 4, 2, 2, 0, 0, 0, 4, 6, 6, 2, 0, 4, 2
Offset: 0

Views

Author

Michael Somos, Jun 29 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 3*q^2 + 2*q^3 + 3*q^4 + 2*q^5 + 2*q^6 + 3*q^8 + 4*q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[1] + 2*A[2] + 3*A[3];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ {2, 1, 0, 0, 0, -1, -2, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2])^2 / 4, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, 2, 1, 0, 0, 0, -1, -2][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( (A + subst(A, x, x^2))^2 / 4, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[0] + 2*A[1] + 3*A[2];
    

Formula

Expansion of f(-q^3, -q^5)^4 / psi(-q)^2 in powers of q where phi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [ 2, 0, -2, 2, -2, 0, 2, -2, ...].
Moebius transform is period 8 sequence [ 2, 1, 0, 0, 0, -1, -2, 0, ...].
Convolution square of A093709.
a(2*n) = A244540(n). a(8*n + 3) = 2*A033761(n). a(8*n + 5) = 2*A053692(n). a(8*n + 7) = 0.

A244553 Expansion of phi(q^2) * (phi(q) - phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 2, -1, 0, 2, 0, -1, 3, -4, 2, 2, 0, 0, 0, -1, 2, 1, 2, -4, 0, 2, 0, 2, 1, -4, 4, 0, 0, 0, 0, -1, 4, -2, 0, 1, 0, 2, 0, -4, 2, 0, 2, 2, 0, 0, 0, 2, 1, -5, 4, -4, 0, 4, 0, 0, 4, -4, 2, 0, 0, 0, 0, -1, 0, 4, 2, -2, 0, 0, 0, 1, 2, -4, 2, 2, 0, 0, 0, -4, 5
Offset: 1

Views

Author

Michael Somos, Jun 30 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - q^2 + 2*q^3 - q^4 + 2*q^6 - q^8 + 3*q^9 - 4*q^10 + 2*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[2] - A[3];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ {1, -2, 1, 0, -1, 2, -1, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2] (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -2, 1, 0, -1, 2, -1][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A, B); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); B = subst(A, x, x^2); polcoeff( B * (A - B) / 2, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[1] - A[2];
    

Formula

Expansion of q * f(-q, -q^7)^2 * phi(q^2) / psi(-q) = q * f(-q, -q^7)^2 * chi(q^2)^2 / chi(-q) in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [ -1, 2, 1, -2, 1, 2, -1, -2, ...].
Moebius transform is period 8 sequence [ 1, -2, 1, 0, -1, 2, -1, 0, ...].
a(2*n) = - A244554(n). a(2*n + 1) = A113411(n). a(8*n + 1) = A112603(n). a(8*n + 3) = 2 * A033761(n). a(8*n + 5) = a(8*n + 7) = 0.
Previous Showing 11-20 of 21 results. Next