cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A108032 Triangle T(n,k), 0<=k<=n, read by rows, defined by : T(0,0) = 1, T(n,k) = 0 if n

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 15, 9, 6, 6, 105, 60, 36, 24, 24, 945, 525, 300, 180, 120, 120, 10395, 5670, 3150, 1800, 1080, 720, 720, 135135, 72765, 39690, 22050, 12600, 7560, 5040, 5040, 2027025, 1081080, 582120, 317520, 176400, 100800, 60480, 40320, 40320
Offset: 0

Views

Author

Philippe Deléham, Jun 01 2005

Keywords

Examples

			1;
1, 1;
3, 2, 2;
15, 9, 6, 6;
105, 60, 36, 24, 24; ...
		

Crossrefs

Diagonals : A001147, A001193, A000142.
Cf. A034430 (row sums).

Formula

Sum{ k, 0<=k<=n} T(n, k) = A034430(n).
T(n, k) = A001147(n-k)*k!*binomial(n, k).
E.g.f.: 1/(1-t*x)*1/sqrt(1-2*x) = 1 + x*(1+t) + x^2/2!*(3+2*t+2*t^2) + .... - Peter Bala, Jun 27 2012

A331403 E.g.f.: 1 / ((1 + x) * sqrt(1 - 2*x)).

Original entry on oeis.org

1, 0, 3, 6, 81, 540, 7155, 85050, 1346625, 22339800, 431331075, 9004668750, 208178118225, 5199538043700, 140664514065075, 4080315642653250, 126613733680058625, 4180226398201854000, 146399020309066399875, 5419213146765629961750, 211446723837565171580625
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/((1 + x) Sqrt[1 - 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(-1)^(n - k) (2 k - 1)!!/k!, {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = {n! * sum(k=0, n, (-1)^(n - k) * (2*k)! / (2^k*k!^2))} \\ Andrew Howroyd, Jan 16 2020
    
  • PARI
    seq(n) = {Vec(serlaplace(1 / ((1 + x) * sqrt(1 - 2*x + O(x*x^n)))))} \\ Andrew Howroyd, Jan 16 2020

Formula

a(n) = n! * Sum_{k=0..n} (-1)^(n - k) * (2*k - 1)!! / k!.
D-finite with recurrence: a(n) +(-n+1)*a(n-1) -(2*n-1)*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 25 2020
a(n) ~ 2^(n + 3/2) * n^n / (3*exp(n)). - Vaclav Kotesovec, Jan 26 2020
Previous Showing 11-12 of 12 results.