cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 352 results. Next

A061765 a(n) = usigma(sigma(n)), where usigma(n) is the sum of unitary divisors of n (A034448) and sigma(n) is the sum of the divisors (A000203).

Original entry on oeis.org

1, 4, 5, 8, 12, 20, 9, 24, 14, 30, 20, 40, 24, 36, 36, 32, 30, 56, 30, 96, 33, 50, 36, 120, 32, 96, 54, 72, 72, 90, 33, 80, 68, 84, 68, 112, 60, 120, 72, 180, 96, 132, 60, 160, 168, 90, 68, 160, 80, 128, 90, 150, 84, 216, 90, 216, 102, 180, 120, 288
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (1 + Power @@@ FactorInteger[DivisorSigma[1, n]]); a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 26 2022 *)

Formula

a(n) = A034448(A000203(n)). - Amiram Eldar, Aug 26 2022

A285906 Numbers n such that sigma(n)/usigma(n) > sigma(m)/usigma(m) for all m < n, where sigma(n) is the sum of divisors of n (A000203) and usigma(n) is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 72, 144, 216, 288, 432, 864, 1728, 2592, 3456, 3600, 5184, 7200, 10800, 21600, 43200, 64800, 86400, 108000, 129600, 216000, 259200, 324000, 432000, 518400, 529200, 648000, 1058400, 2116800, 3175200, 4233600, 5292000, 6350400, 10584000
Offset: 1

Views

Author

Amiram Eldar, Apr 28 2017

Keywords

Comments

This sequence is infinite. The smallest values of n for which sigma(n)/usigma(n) > 2, 3 and 4 are a(7), a(19), and a(44).

Examples

			sigma(72)=195, usigma(72)=90, and their ratio 195/90=13/6 is higher than sigma(m)/usigma(m) for all m<72, thus 72 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    a={}; rmax=0; Do[r=DivisorSigma[1, n]/usigma[n]; If[r>rmax, AppendTo[a, n]; rmax=r], {n, 3000}]; a

A348944 a(n) = (1/2) * (A003959(n)+A034448(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and A034448 (usigma) is multiplicative with a(p^e) = (p^e)+1.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 18, 13, 18, 12, 28, 14, 24, 24, 49, 18, 39, 20, 42, 32, 36, 24, 72, 31, 42, 46, 56, 30, 72, 32, 138, 48, 54, 48, 97, 38, 60, 56, 108, 42, 96, 44, 84, 78, 72, 48, 196, 57, 93, 72, 98, 54, 138, 72, 144, 80, 90, 60, 168, 62, 96, 104, 397, 84, 144, 68, 126, 96, 144, 72, 261, 74, 114, 124, 140, 96
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 36 = 2^2 * 3^2, where a(36) = 97 != 91 = 7*13 = a(4)*a(9).

Crossrefs

Arithmetic mean of A003959 and A034448.
Cf. also A325973.

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)^e; f2[p_, e_] := p^e + 1; a[1] = 1; a[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f) / 2; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348944(n) = ((1/2)*(A003959(n)+A034448(n)));

A348945 a(n) = A348944(n) - sigma(n), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 0, 0, 75, 0, 0, 0, 6, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 18, 0, 24, 0, 0, 0, 0, 0, 0, 0, 270, 0, 0, 0, 0, 0, 0, 0, 66, 0, 0, 0, 0, 0, 0, 0, 108, 48, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 300, 0, 0, 0, 10
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 0; a[n_] := (Times @@ f2 @@@ (f = FactorInteger[n]) + Times @@ f3 @@@ f) / 2 - Times @@ f1 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348944(n) = ((1/2)*(A003959(n)+A034448(n)));
    A348945(n) = (A348944(n)-sigma(n));

Formula

a(n) = A348944(n) - A000203(n) = ((1/2) * (A003959(n)+A034448(n))) - A000203(n).
a(n) = (1/2) * (A348029(n)-A048146(n)).

A055033 a(n) = usigma(usigma(n)), where usigma(n) is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 4, 5, 6, 12, 20, 9, 10, 18, 30, 20, 30, 24, 36, 36, 18, 30, 72, 30, 72, 33, 50, 36, 50, 42, 96, 40, 54, 72, 90, 33, 48, 68, 84, 68, 78, 60, 120, 72, 84, 96, 132, 60, 120, 120, 90, 68, 90, 78, 168, 90, 144, 84, 160, 90, 90, 102, 180, 120, 216, 96
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2001

Keywords

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; a[n_] := usigma[usigma[n]]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    a(n) = usigma(usigma(n)); \\ Amiram Eldar, Jul 24 2024

Formula

a(n) = A034448(A034448(n)). - Amiram Eldar, Jul 24 2024

A254503 Möbius transform of A034448.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 6, 10, 11, 6, 13, 14, 15, 8, 17, 12, 19, 10, 21, 22, 23, 12, 20, 26, 18, 14, 29, 30, 31, 16, 33, 34, 35, 12, 37, 38, 39, 20, 41, 42, 43, 22, 30, 46, 47, 24, 42, 40, 51, 26, 53, 36, 55, 28, 57, 58, 59, 30, 61, 62, 42, 32, 65, 66, 67, 34, 69, 70
Offset: 1

Views

Author

Álvar Ibeas, Jan 31 2015

Keywords

Crossrefs

Cf. A000010 (totient), A001694 (powerful), A005117 (squarefree), A034448 (usigma), A057521 (powerful part), A055231 (unitary squarefree kernel).

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[#]^2*EulerPhi[n/#] &, CoprimeQ[n/#, #] &], {n, 70}] (* Michael De Vlieger, Jun 27 2018 *)
    f[p_, e_] := (p - 1)*p^(e - 1); f[p_, 1] := p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((e=f[i, 2]) > 1, f[i, 1] = eulerphi(f[i, 1]^e); f[i, 2] = 1);); factorback(f);} \\ Michel Marcus, Feb 06 2015
    
  • PARI
    a(n) = sumdiv(n, d, if(gcd(n/d, d) == 1, moebius(d)^2 * eulerphi(n/d))); \\ Daniel Suteu, Jun 27 2018

Formula

a(n) = phi(A057521(n)) * A055231(n).
If n is squarefree, a(n) = n; if n is powerful, a(n) = phi(n).
Multiplicative with a(p) = p; a(p^e) = phi(p^e), for e > 1.
Dirichlet g.f.: zeta(s-1) / zeta(2s-1).
a(n) = Sum_{d|n, gcd(n/d, d) = 1} mu(d)^2 * phi(n/d). - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} a(k) ~ n^2 / (2*zeta(3)). - Vaclav Kotesovec, Jan 11 2019

A302572 Unitary barely deficient numbers: unitary deficient numbers k such that usigma(k)/k > usigma(m)/m for all unitary deficient numbers m < k, where usigma(k) is the sum of the unitary divisors of k (A034448).

Original entry on oeis.org

1, 2, 10, 84, 110, 1155, 6490, 34320, 55335, 80652, 163212, 449295, 676390, 1360810, 1503370, 1788490, 3214090, 22627605, 32062485, 35604492, 103712410, 365690892, 615206030, 815634435
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2018

Keywords

Examples

			The values of usigma(k)/k are 1, 1.5, 1.8, 1.904..., 1.963..., 1.994...
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; seq = {}; r = 0; Do[s = usigma[n]/n; If[s < 2 && s > r, AppendTo[seq, n]; r = s], {n, 1, 1000000}]; seq

A323163 Greatest common divisor of product (1+(p^e)) and product p^(e-1), where p ranges over prime factors of n, with e corresponding exponent; a(n) = gcd(A034448(n), A003557(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 3, 10, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2019

Keywords

Crossrefs

Differs from A062760 for the first time at n=36, where a(36) = 2, while A062760(36) = 1.

Programs

  • PARI
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A323163(n) = gcd(A003557(n), A034448(n));

Formula

a(n) = gcd(A003557(n), A034448(n)).

A325812 Numbers k such that gcd(A034448(k)-k, k-A048146(k)) is equal to abs(k-A048146(k)).

Original entry on oeis.org

1, 6, 12, 28, 56, 60, 108, 120, 132, 168, 264, 280, 312, 408, 420, 440, 456, 496, 528, 540, 552, 696, 700, 728, 744, 756, 760, 888, 984, 992, 1032, 1128, 1140, 1188, 1272, 1404, 1416, 1456, 1464, 1608, 1704, 1710, 1752, 1836, 1896, 1992, 2052, 2136, 2328, 2424, 2472, 2484, 2568, 2616, 2646, 2712, 3048, 3132, 3144, 3288, 3336, 3344
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Comments

Numbers k for which A325813(k) is equal to abs(A325814(k)).
Numbers k such that A325814(k) is not zero (not in A064591) and divides A034460(k).
Conjecture: after the initial one all other terms are even. If this holds then there are no odd perfect numbers.

Crossrefs

Cf. A000396 (a subsequence).

Programs

A325963 Numbers n for which A034448(n)-n is equal to n-A048250(n).

Original entry on oeis.org

1, 4, 24, 240, 349440
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2019

Keywords

Comments

No other terms below 536870912 (2^29).
a(6) > 10^12, if it exists. - Giovanni Resta, Jun 07 2019

Crossrefs

Positions of zeros in A325977.

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    isA325963(n) = ((A034448(n)-n) == (n-A048250(n)));
Previous Showing 21-30 of 352 results. Next