cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 352 results. Next

A178450 Dirichlet inverse of A034448 (unitary sigma).

Original entry on oeis.org

1, -3, -4, 4, -6, 12, -8, -6, 6, 18, -12, -16, -14, 24, 24, 8, -18, -18, -20, -24, 32, 36, -24, 24, 10, 42, -12, -32, -30, -72, -32, -12, 48, 54, 48, 24, -38, 60, 56, 36, -42, -96, -44, -48, -36, 72, -48, -32, 14, -30, 72, -56, -54, 36, 72, 48, 80, 90, -60, 96, -62, 96, -48, 16, 84, -144, -68, -72, 96, -144
Offset: 1

Views

Author

R. J. Mathar, Dec 22 2010

Keywords

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes
    a n = product . map (\(p, e) -> if even e then 2*unPrime p^(e`div`2) else -(unPrime p+1)*unPrime p^(e`div`2)) $ factorise n -- Sebastian Karlsson, Dec 04 2021
  • Mathematica
    usigma[n_] := If[n==1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    a[n_] := a[n] = If[n==1, 1, -Sum[usigma[n/d] a[d], {d, Most@Divisors[n]}]];
    Array[a, 70] (* Jean-François Alcover, Feb 16 2020 *)
    f[p_, e_] := If[OddQ[e], -(p+1)*p^((e-1)/2), 2*p^(e/2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 24 2023 *)
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdivmult(n, d, if(gcd(d, n/d)==1, d))))} \\ Andrew Howroyd, Aug 05 2018
    
  • PARI
    A178450(n) = { my(f=factor(n)); prod(i=1, #f~, if(!(f[i,2]%2), 2*(f[i, 1]^(f[i, 2]/2)), -(1+f[i,1])*(f[i, 1]^((f[i, 2]-1)/2)))); }; \\ (After the multiplicative formula) - Antti Karttunen, Nov 26 2024
    

Formula

Dirichlet g.f.: zeta(2s-1)/(zeta(s)*zeta(s-1)). - R. J. Mathar, Apr 14 2011
Multiplicative with a(p^e) = 2*p^(e/2) if e is even, -(p+1)*p^((e-1)/2) if e is odd. - Sebastian Karlsson, Dec 04 2021

A301981 Euler transform of A034448.

Original entry on oeis.org

1, 1, 4, 8, 19, 37, 84, 154, 313, 581, 1109, 2001, 3696, 6518, 11637, 20215, 35173, 60007, 102404, 171960, 288286, 477586, 788527, 1289539, 2101394, 3396594, 5469267, 8747285, 13934572, 22068218, 34815513, 54640049, 85434022, 132964684, 206193983, 318414629
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; A034448 = Flatten[{1, Table[Times @@ (1 + Power @@@ FactorInteger[k]), {k, 2, nmax+1}]}]; CoefficientList[Series[Exp[Sum[Sum[A034448[[k]] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1-x^k)^A034448(k).
Conjecture: a(n) ~ exp((3*Pi*n)^(2/3)/2 - 1/2) * A^6 / (2 * 3^(5/6) * Pi^(1/3) * n^(5/6)), where A is the Glaisher-Kinkelin constant A074962.

A301982 Expansion of Product_{k>=1} (1 + x^k)^A034448(k).

Original entry on oeis.org

1, 1, 3, 7, 12, 26, 52, 92, 170, 310, 541, 945, 1636, 2760, 4639, 7743, 12725, 20795, 33730, 54184, 86547, 137351, 216387, 339069, 528394, 818664, 1262245, 1936835, 2957432, 4496330, 6807191, 10262275, 15411203, 23056461, 34366753, 51047199, 75567600
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; A034448 = Flatten[{1, Table[Times @@ (1 + Power @@@ FactorInteger[k]),{k, 2, nmax+1}]}]; CoefficientList[Series[Exp[Sum[-(-1)^j/j * Sum[A034448[[k]] * x^(j*k), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x]

Formula

Conjecture: a(n) ~ exp(3 * Pi^(2/3) * n^(2/3) / 2^(5/3)) / (2^(4/3) * sqrt(3) * Pi^(1/6) * n^(2/3)).

A308041 Decimal expansion of lim_{m->oo} (1/log(m))*Sum_{k=1..m} 1/usigma(k), where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

7, 6, 8, 7, 1, 8, 3, 6, 2, 4, 4, 6, 4, 8, 5, 1, 9, 8, 6, 7, 2, 7, 3, 4, 3, 3, 2, 4, 5, 5, 3, 5, 0, 5, 2, 5, 2, 3, 4, 2, 5, 5, 7, 4, 0, 4, 1, 1, 9, 0, 4, 1, 1, 0, 7, 0, 1, 5, 4, 1, 3, 5, 2, 9, 3, 4, 8, 6, 0, 7, 7, 6, 8, 3, 3, 7, 9, 0, 8, 0, 3, 9, 3, 3, 2, 8, 8, 0, 7, 6, 4, 8, 9, 6, 9, 1, 4, 7, 5, 9, 5, 3, 3, 7, 2, 4
Offset: 0

Views

Author

Amiram Eldar, May 10 2019

Keywords

Examples

			0.76871836244648519867273433245535052523425574041190...
		

Crossrefs

Cf. A034448, A063974, A308039 (corresponding limit with sigma).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; f[p_] := 1 - (p - 1)/p*Sum[1/p^k/(p^k + 1), {k, 1, m}]; c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]*Range[0, m]];RealDigits[f[2]*Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

From Amiram Eldar, Dec 23 2024: (Start)
Equals Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/(p^k+1))).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A063974(k). (End)

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021

A323159 Greatest common divisor of product (1+(p^e)) and product (1+p), where p ranges over prime factors of n, with e corresponding exponent; a(n) = gcd(A034448(n), A048250(n)).

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 2, 18, 12, 4, 14, 24, 24, 1, 18, 6, 20, 6, 32, 36, 24, 12, 2, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 2, 38, 60, 56, 18, 42, 96, 44, 12, 12, 72, 48, 4, 2, 6, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 16, 1, 84, 144, 68, 18, 96, 144, 72, 6, 74, 114, 8, 20, 96, 168, 80, 6, 2, 126, 84, 32, 108, 132, 120, 36, 90, 36
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A034448(n), A048250(n)).

A323160 a(n) = gcd(n, A323159(n)) = gcd(n, A034448(n), A048250(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 2, 3, 2, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A323160(n) = gcd(n, gcd(A034448(n), A048250(n)));

Formula

a(n) = gcd(n, A323159(n)) = gcd(A048250(n), A323166(n)).
a(n) = gcd(n, A034448(n), A048250(n)).

A327160 Number of positive integers that are reachable from n with some combination of transitions x -> usigma(x)-x and x -> gcd(x,usigma(x)), where usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 2, 2, 2, 4, 2, 4, 2, 5, 4, 2, 2, 6, 2, 5, 3, 6, 2, 5, 2, 4, 2, 5, 2, 4, 2, 2, 5, 6, 3, 6, 2, 7, 3, 6, 2, 4, 2, 4, 5, 5, 2, 7, 2, 7, 5, 8, 2, 4, 3, 4, 3, 4, 2, 1, 2, 7, 3, 2, 3, 4, 2, 7, 4, 8, 2, 7, 2, 7, 3, 6, 3, 3, 2, 7, 2, 6, 2, 7, 3, 6, 6, 7, 2, 1, 5, 6, 4, 8, 4, 9, 2, 9, 5, 9, 2, 4, 2, 7, 7
Offset: 1

Views

Author

Antti Karttunen, Aug 25 2019

Keywords

Comments

Question: Is this sequence well defined for every n ? If A318882 is not well defined in whole N, then neither this can be.

Examples

			From n = 30 we can reach any of the following strictly positive numbers: 30 (e.g., with an empty sequence of transitions), 42 (as A034460(30) = 42), 54 (as A034460(42) = 54; note that A034460(54) = 30 again) and 6 as A323166(30) = A323166(42) = A323166(54) = 6 = A323166(6) = A034460(6), thus a(30) = 4.
		

Crossrefs

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A327160aux(n,xs) = if(vecsearch(xs,n),xs, xs = setunion([n],xs); if(1==n,xs, my(a=A034448(n)-n, b=gcd(A034448(n),n)); xs = A327160aux(a,xs); if((a==b),xs, A327160aux(b,xs))));
    A327160(n) = length(A327160aux(n,Set([])));

A327161 Number of positive integers that are reachable from n with some combination of transitions x -> usigma(x)-x and x -> gcd(x,phi(x)), where usigma is the sum of unitary divisors of n (A034448), and phi is Euler totient function (A000010).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 5, 2, 5, 2, 6, 4, 5, 2, 7, 2, 6, 4, 7, 2, 6, 3, 6, 4, 6, 2, 10, 2, 6, 5, 7, 3, 8, 2, 8, 4, 7, 2, 10, 2, 6, 5, 7, 2, 8, 3, 8, 5, 8, 2, 10, 4, 6, 4, 7, 2, 4, 2, 8, 5, 7, 3, 6, 2, 8, 5, 9, 2, 9, 2, 8, 4, 7, 3, 5, 2, 9, 5, 7, 2, 8, 3, 8, 6, 7, 2, 4, 5, 7, 5, 9, 4, 11, 2, 11, 5, 13, 2, 10, 2, 8, 7
Offset: 1

Views

Author

Antti Karttunen, Aug 25 2019

Keywords

Comments

Question: Is this sequence well-defined for every n > 0? If A318882 is not well-defined for all positive integers, then neither can this be.

Examples

			a(30) = 10 as the graph obtained from vertex-relations x -> A034460(x) and x -> A009195(x) spans the following ten numbers [1, 2, 4, 6, 8, 12, 18, 30, 42, 54], which is illustrated below:
.
  30 -> 42 -> 54 (-> 30 ...)
   |     |     |
   2 <-- 6 <- 18
   |  \        |
   1 <-- 4 <- 12
            \  |
             <-8
		

Crossrefs

Programs

  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A327161aux(n,xs) = if(vecsearch(xs,n),xs, xs = setunion([n],xs); if(1==n,xs, my(a=A034460(n), b=gcd(eulerphi(n),n)); xs = A327161aux(a,xs); if((a==b),xs, A327161aux(b,xs))));
    A327161(n) = length(A327161aux(n,Set([])));

Formula

a(n) >= max(A318882(n), 1+A326195(n)).

A327164 Number of iterations of x -> gcd(usigma(x),x) needed to reach a fixed point, where usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 0, 2, 2, 1, 2, 2, 3, 1, 2, 2, 3, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Crossrefs

Cf. A034448, A323166, A327158 (positions of zeros).
Cf. also A326194.

Programs

A329858 Numbers k such that k and usigma(k) have the same set of prime divisors, where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

1, 6, 24, 60, 90, 180, 360, 378, 816, 1056, 1512, 3780, 9100, 10500, 12240, 13230, 15750, 15840, 26460, 31500, 36750, 40950, 46494, 51408, 52920, 63000, 63700, 66528, 73500, 87360, 94500, 95550, 110250, 145600, 145920, 147000, 163800, 181632, 185976, 220500
Offset: 1

Views

Author

Amiram Eldar, Nov 22 2019

Keywords

Examples

			6 is in the sequence since 6 = 2 * 3 and usigma(6) = 12 = 2^2 * 3 both have the same set of prime divisors, {2, 3}.
		

Crossrefs

The unitary version of A027598.

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); usigma[1]=1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[2*10^5], rad[#] == rad[usigma[#]] &]
Previous Showing 41-50 of 352 results. Next