cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A326395 Expansion of Sum_{k>=1} x^(2*k) * (1 + x^k) / (1 - x^(3*k)).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 0, 2, 2, 2, 1, 4, 0, 2, 3, 2, 1, 5, 0, 3, 2, 2, 1, 6, 1, 2, 3, 2, 1, 6, 0, 3, 3, 2, 2, 7, 0, 2, 2, 4, 1, 6, 0, 3, 5, 2, 1, 7, 0, 3, 3, 2, 1, 7, 2, 4, 2, 2, 1, 9, 0, 2, 4, 3, 2, 6, 0, 3, 3, 4, 1, 10, 0, 2, 4, 2, 2, 6, 0, 5, 4, 2, 1, 8, 2, 2, 3, 4, 1, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Comments

Number of divisors of n that are not of the form 3*k + 1.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1) .. a(N)
    S:= series(add(x^(2*k)*(1+x^k)/(1-x^(3*k)),k=1..N/2),x,N+1):
    seq(coeff(S,x,i),i=1..N); # Robert Israel, Aug 27 2020
  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[x^(2 k) (1 + x^k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, 1 &, !MemberQ[{1}, Mod[#, 3]] &], {n, 1, 90}]
  • PARI
    a(n) = {numdiv(n) - sumdiv(n, d, d%3==1)} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A000005(n) - A001817(n).
Sum_{k=1..n} a(k) ~ 2*n*log(n)/3 + c*n, where c = (5*gamma-2)/3 - gamma(1,3) = (5*A001620-2)/3 - A256425 = -0.382447... . - Amiram Eldar, Jan 14 2024

A327785 Square array read by antidiagonals: A(n,k) = Sum_{d|n} (k/d), (n>=1, k>=0), where (m/n) is the Kronecker symbol.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 0, 3, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 0, 4, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 2, 1, 1, 2, 0, 2, 4, 1, 1, 1, 2, 1, 1, 2, 0, 1, 3, 1, 1, 2, 0, 3, 2, 0, 2, 0, 1, 4, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 3, 0, 4, 0, 0, 3, 0, 0, 6, 1
Offset: 1

Views

Author

Seiichi Manyama, Sep 25 2019

Keywords

Examples

			Square array begins:
   1, 1, 1, 1, 1, 1, 1, 1, ...
   1, 2, 1, 0, 1, 0, 1, 2, ...
   1, 2, 0, 1, 2, 0, 1, 2, ...
   1, 3, 1, 1, 1, 1, 1, 3, ...
   1, 2, 0, 0, 2, 1, 2, 0, ...
   1, 4, 0, 0, 2, 0, 1, 4, ...
   1, 2, 2, 0, 2, 0, 0, 1, ...
   1, 4, 1, 0, 1, 0, 1, 4, ...
		

Crossrefs

Programs

  • Mathematica
    A[n_, k_] := Sum[KroneckerSymbol[k, d], {d, Divisors[n]}];
    Table[A[n - k, k], {n, 1, 13}, {k, n - 1, 0, -1}] // Flatten (* Jean-François Alcover, Sep 25 2019 *)

A328484 Dirichlet g.f.: zeta(s)^2 / (1 - 3^(-s)).

Original entry on oeis.org

1, 2, 3, 3, 2, 6, 2, 4, 6, 4, 2, 9, 2, 4, 6, 5, 2, 12, 2, 6, 6, 4, 2, 12, 3, 4, 10, 6, 2, 12, 2, 6, 6, 4, 4, 18, 2, 4, 6, 8, 2, 12, 2, 6, 12, 4, 2, 15, 3, 6, 6, 6, 2, 20, 4, 8, 6, 4, 2, 18, 2, 4, 12, 7, 4, 12, 2, 6, 6, 8, 2, 24, 2, 4, 9, 6, 4, 12, 2, 10, 15, 4, 2, 18, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Inverse Moebius transform of A051064.
Dirichlet convolution of A000005 with characteristic function of powers of 3.

Crossrefs

Programs

  • Maple
    seq(add(padic[ordp](3*d, 3), d in numtheory[divisors](n)), n=1..100); # Ridouane Oudra, Sep 30 2024
  • Mathematica
    Table[DivisorSum[n, IntegerExponent[3 #, 3] &], {n, 1, 85}]
    nmax = 85; CoefficientList[Series[Sum[Sum[x^(i 3^j)/(1 - x^(i 3^j)), {j, 0, Floor[Log[3, nmax]] + 1}], {i, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := If[p == 3, (e + 1)*(e + 2)/2, e + 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)

Formula

G.f.: Sum_{i>=1} Sum_{j>=0} x^(i*3^j) / (1 - x^(i*3^j)).
a(n) = Sum_{d|n} A051064(d).
Sum_{k=1..n} a(k) ~ 3*n*(log(n)/2 - log(3)/4 - 1/2 + gamma), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(p^e) = (e+1)*(e+2)/2 if p=3, and e+1 otherwise. - Amiram Eldar, Dec 02 2020
From Ridouane Oudra, Sep 30 2024: (Start)
a(n) = Sum_{i=0..A007949(n)} tau(n/3^i).
a(n) = Sum_{d|3*n} A007949(d).
a(n) = (1/2)*A051064(n)*A372713(n).
a(n) = (1/2)*(A051064(n) + 1)*A000005(n).
a(n) = A373438(n)*A035191(n). (End)
Previous Showing 11-13 of 13 results.