cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A209936 Triangle of multiplicities of k-th partition of n corresponding to sequence A080577. Multiplicity of a given partition of n into k parts is the number of ways parts can be selected from k distinguishable bins. See the example.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 12, 6, 12, 1, 5, 20, 20, 30, 30, 20, 1, 6, 30, 30, 60, 15, 120, 60, 20, 90, 30, 1, 7, 42, 42, 105, 42, 210, 140, 105, 105, 420, 105, 140, 210, 42, 1, 8, 56, 56, 168, 56, 336, 280, 28, 336, 168, 840, 280, 168, 420, 840, 1120, 168, 70, 560, 420, 56, 1
Offset: 1

Views

Author

Sergei Viznyuk, Mar 15 2012

Keywords

Comments

Differs from A035206 after position 21.
Differs from A210238 after position 21.
The n-th row of the triangle, written as a column vector v(n), satisfies K . v(n) = #SSYT(lambda,n) where K is the Kostka matrix of order n, and #SSYT(lambda,n) is the count of semi-standard Young tableaux in n variables of the partitions of n. - Wouter Meeussen, Jan 27 2025

Examples

			Triangle begins:
  1
  2, 1
  3, 6, 1
  4, 12, 6, 12, 1
  5, 20, 20, 30, 30, 20, 1
  6, 30, 30, 60, 15, 120, 60, 20, 90, 30, 1
  7, 42, 42, 105, 42, 210, 140, 105, 105, 420, 105, 140, 210, 42, 1
  ...
Thus for n=3 (third row) the partitions of n=3 are:
  3+0+0  0+3+0  0+0+3   (multiplicity=3),
  2+1+0  2+0+1  1+2+0  1+0+2  0+2+1  0+1+2  (multiplicity=6),
  1+1+1  (multiplicity=1).
		

Crossrefs

Row lengths give A000041.
Row sums give A088218.

Programs

  • Mathematica
    Apply[Multinomial,Last/@Tally[#]&/@PadRight[IntegerPartitions[n]],1] (* Wouter Meeussen, Jan 26 2025 *)

A210238 Triangle of multiplicities D(n) of multinomial coefficients corresponding to sequence A210237.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 12, 6, 12, 1, 5, 20, 20, 30, 30, 20, 1, 6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1, 7, 42, 42, 42, 105, 210, 105, 245, 420, 140, 105, 210, 42, 1, 8, 56, 56, 224, 28, 336, 336, 280, 168, 168, 840, 420, 1120, 70, 1120, 560, 168, 420, 56, 1
Offset: 1

Views

Author

Sergei Viznyuk, Mar 18 2012

Keywords

Comments

Multiplicity D(n) of multinomial coefficient M(n) is the number of ways the same value of M(n)=n!/(m1!*m2!*..*mk!) is obtained by distributing n identical balls into k distinguishable bins.
Differs from A209936 after a(21).
Differs from A035206 after a(36).
The checksum relationship: sum(M(n)*D(n)) = k^n
The number of terms per row (for each value of n starting with n=1) forms sequence A070289.

Examples

			1
2, 1
3, 6, 1
4, 12, 6, 12, 1
5, 20, 20, 30, 30, 20, 1
6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1
7, 42, 42, 42, 105, 210, 105, 245, 420, 140, 105, 210, 42, 1
Thus for n=3 (third row) the same value of multinomial coefficient follows from the following combinations:
3!/(3!0!0!) 3!/(0!3!0!) 3!/(0!0!3!) (i.e. multiplicity=3)
3!/(2!1!0!) 3!/(2!0!1!) 3!/(0!2!1!) 3!/(0!1!2!) 3!/(1!0!2!) 3!/(1!2!0!)  (i.e. multiplicity=6)
3!/(1!1!1!) (i.e. multiplicity=1)
		

Crossrefs

Programs

  • Mathematica
    Table[Last/@Tally[Multinomial@@@Compositions[k,k]],{k,8}] (* Wouter Meeussen, Mar 09 2013 *)

A214308 a(n) is the number of all two colored bracelets (necklaces with turning over allowed) with n beads with the two colors from a repertoire of n distinct colors, for n>=2.

Original entry on oeis.org

1, 6, 24, 60, 165, 336, 784, 1584, 3420, 6820, 14652, 29484, 62335, 128310, 269760, 558960, 1175499, 2446668, 5131900, 10702020, 22385517, 46655224, 97344096, 202555800, 421478200, 875297124, 1816696728, 3764747868, 7795573230, 16121364000, 33310887808
Offset: 2

Views

Author

Wolfdieter Lang, Jul 31 2012

Keywords

Comments

This is the second column (m=2) of triangle A214306.
Each 2 part partition of n, with the parts written in nonincreasing order, defines a color signature. For a given color signature, say [p[1], p[2]], with p[1] >= p[2] >= 1, there are A213941(n,k)= A035206(n,k)*A213939(n,k) bracelets if this signature corresponds (with the order of the parts reversed) to the k-th partition of n in Abramowitz-Stegun (A-St) order. See A213941 for more details. Here all p(n,2)= A008284(n,2) = floor(n/2) partitions of n with 2 parts are considered. The color repertoire for a bracelet with n beads is [c[1], ..., c[n]].
Compare this sequence with A000029 where also single colored bracelets are included, and the color repertoire is only [c[1], c[2]] for all n.

Examples

			a(5) = A213941(5,2) + A213941(5,3) = 20 + 40 = 60 from the bracelet (with colors j for c[j], j=1,2,..,5) cyclic(11112) which represents a class of order A035206(5,2) = 20 (if all 5 colors are used), cyclic(11122) and cyclic(11212) each representing also a color class of 20 members each, summing to 60 bracelets  with five beads and five colors available for the two color signatures [4,1] and [3,2].
		

Crossrefs

Cf. A213941, A214306, A213942 (m=2, representative bracelets), A214310 (m=3).

Formula

a(n) = A214306(n,2), n >= 2.
a(n) = sum(A213941(n,k),k=2..A008284(n,2)+1), n>=2, with A008284(n,2) = floor(n/2).
a(n) = binomial(n,2) * A056342(n). - Andrew Howroyd, Mar 25 2017

Extensions

a(25)-a(32) from Andrew Howroyd, Mar 25 2017

A130273 Refines A075197(n): number of partitions of n balls of n colors. The refinement has shape A000041(n).

Original entry on oeis.org

1, 4, 2, 9, 24, 5, 20, 84, 54, 132, 15, 35, 240, 320, 630, 780, 720, 52, 66, 570, 870, 2280, 465, 6240, 4440, 1320, 8280, 4050, 203, 105, 1260, 1974, 6720, 2394, 20580, 19740, 14385, 11445, 83160, 31080, 34860, 77910, 23772, 877, 176, 2520, 4312, 17640, 5432
Offset: 1

Views

Author

Alford Arnold, May 19 2007

Keywords

Comments

a(n) can be calculated by resorting A035206 into Mathematica order vice AS1 ordering and then multiplying term by term with A096443(n).

Examples

			The array begins
1
4 2
9 24 5
20 84 54 132 15
...
Row three is (9,24,5) because there are (3, 4,5) cases; and we have (3, 6,1) ways to pick 1,2 or 3 colors.
		

Crossrefs

Previous Showing 11-14 of 14 results.