cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A298071 Number of primes between floor(3*n/2) and 2*n (inclusive).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 4, 5, 4, 5, 6, 6, 6, 7, 6, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 7, 6, 7, 7, 7, 6, 6, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 8, 9, 8, 8, 9, 10, 9
Offset: 1

Views

Author

Bruno Berselli, Jan 11 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimePi[2*n] - PrimePi[Floor[3*n/2]] + If[PrimeQ[Floor[ 3*n/2]], 1, 0]; Array[a, 100] (* Jean-François Alcover, Jan 11 2018 *)
  • Sage
    A298071 = lambda n: len([p for p in (3*n//2..2*n) if is_prime(p)])
    print([A298071(n) for n in (1..97)]) # Peter Luschny, Jan 11 2018

A066665 a(n) = #{(x,y) | 0<=y<=x<=n and x+y is prime}.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 14, 16, 19, 23, 27, 31, 35, 38, 42, 47, 52, 56, 61, 65, 70, 76, 82, 88, 94, 100, 107, 114, 121, 128, 136, 143, 150, 158, 166, 175, 185, 194, 203, 213, 223, 233, 243, 252, 262, 272, 282, 291, 301, 311, 322, 334, 346
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 07 2002

Keywords

Examples

			a(3)=5, as sums of (1,1), (2,0), (2,1), (3,0) and (3,2) give 5 primes.
		

Crossrefs

Formula

a(0) = 0, for n>0: a(n) = a(n-1) + A035250(n).

A074810 Numbers k such that the number of primes between k and 2k (inclusive) = largest prime factor of k.

Original entry on oeis.org

1, 2, 4, 8, 9, 28, 65, 114, 174, 186, 246, 623, 1784, 1832, 1912, 5121, 13810, 14090, 39413, 40403, 808822, 809858, 810026, 2201505, 2202735, 6047408, 6048656, 16463939, 16467271, 16472371, 121482371, 121495747, 330358060, 898100679
Offset: 1

Views

Author

Jason Earls, Sep 08 2002

Keywords

Examples

			28 is a term because there are 7 primes between n = 28 and 2n = 56: 29, 31, 37, 41, 43, 47, 53; and the largest prime dividing 28 is 7.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if pi(2*n)-pi(n-1)=max(1, factorset(n)) then n fi end: seq(a(n), n=1..1000); # Emeric Deutsch, Feb 05 2006

Extensions

More terms from Emeric Deutsch, Feb 05 2006
a(24)-a(34) from Donovan Johnson, Apr 23 2010

A078754 Numbers k such that for all m>k there are more than n primes between m and 2m (inclusive).

Original entry on oeis.org

1, 8, 14, 20, 21, 26, 33, 35, 48, 50, 51, 63, 74, 75, 81, 86, 90, 111, 114, 116, 119, 120, 128, 134, 140, 153, 155, 168, 174, 183, 186, 200, 204, 209, 215, 216, 219, 230, 243, 245, 249, 284, 285, 288, 296, 299, 300, 303, 320, 321, 323, 326, 329, 338, 354, 363
Offset: 1

Views

Author

Jason Earls, Jan 08 2003

Keywords

Comments

The terms shown are only conjectured values.

Examples

			a(3)=14 because for m>14, more than 3 primes always exist between m and 2m (inclusive).
		

Crossrefs

Cf. A035250.

Programs

  • PARI
    pn2n(n) = sum(k=n,2*n,if(isprime(k),1,0));
    mpn2n(a,m, w)=local(k,M); for(n=a,m, M=0; k=0; while(k
    				

A220095 n such that there are no primes between n - sqrt(n) and n.

Original entry on oeis.org

1, 2, 11, 29, 125, 126, 127
Offset: 1

Views

Author

Jon Perry, Dec 04 2012

Keywords

Comments

Conjecture: This sequence is complete.

Crossrefs

Cf. A035250.

Programs

  • JavaScript
    function isprime(i) {
    var i, j;
    if (i == 1) return false;
    if (i == 2) return true;
    if (i % 2 == 0) return false;
    for (j = 3; j <= Math.floor(Math.sqrt(i)); j += 2)
    if (i % j == 0) return false;
    return true;
    }
    for (n = 1; n < 100000; n++) {
    for (k = Math.ceil(n - Math.sqrt(n)); k < n; k++) {
    ip = false;
    if (isprime(k)) {ip = true; break;}
    }
    if (!ip) document.write(n + ", ");
    }
  • Mathematica
    Select[Range[1000], PrimePi[# - 1] == PrimePi[# - Sqrt[#]] &] (* Alonso del Arte, Dec 04 2012 *)

A353946 a(n) = (pi(2n-1) - pi(n-1))^pi(n) for n > 1, a(1) = 0.

Original entry on oeis.org

0, 2, 4, 4, 8, 8, 81, 16, 81, 256, 1024, 1024, 4096, 729, 4096, 15625, 78125, 16384, 390625, 65536, 390625, 1679616, 10077696, 10077696, 10077696, 10077696, 40353607, 40353607, 282475249, 282475249, 8589934592, 1977326743, 1977326743, 8589934592, 8589934592, 31381059609, 1000000000000
Offset: 1

Views

Author

Wesley Ivan Hurt, May 12 2022

Keywords

Comments

Number of functions from P to Q, where P is the set of primes <= n and Q is the set of primes q such that n <= q <= 2n-1.

Crossrefs

Cf. A000720 (pi), A035250, A352749.

Programs

  • Mathematica
    Join[{0}, Table[(PrimePi[2 n - 1] - PrimePi[n - 1])^PrimePi[n], {n, 2, 30}]]

Formula

a(n) = A035250(n)^A000720(n) for n > 1, a(1) = 0.
Previous Showing 41-46 of 46 results.