cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A318156 Expansion of (1/(1 - x)) * Sum_{k>=1} x^(k*(2*k-1)) / Product_{j=1..2*k-1} (1 - x^j).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 55, 69, 85, 104, 127, 154, 186, 224, 268, 320, 381, 452, 534, 630, 741, 869, 1017, 1187, 1382, 1606, 1862, 2155, 2489, 2869, 3301, 3792, 4349, 4979, 5692, 6497, 7405, 8429, 9581, 10876, 12331, 13963, 15792, 17840, 20131, 22691
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A067659.

Examples

			From _Gus Wiseman_, Jul 18 2021: (Start)
Also the number of strict integer partitions of 2n+1 of even length with exactly one odd part. For example, the a(1) = 1 through a(8) = 12 partitions are:
  (2,1)  (3,2)  (4,3)  (5,4)  (6,5)   (7,6)      (8,7)      (9,8)
         (4,1)  (5,2)  (6,3)  (7,4)   (8,5)      (9,6)      (10,7)
                (6,1)  (7,2)  (8,3)   (9,4)      (10,5)     (11,6)
                       (8,1)  (9,2)   (10,3)     (11,4)     (12,5)
                              (10,1)  (11,2)     (12,3)     (13,4)
                                      (12,1)     (13,2)     (14,3)
                                      (6,4,2,1)  (14,1)     (15,2)
                                                 (6,4,3,2)  (16,1)
                                                 (8,4,2,1)  (6,5,4,2)
                                                            (8,4,3,2)
                                                            (8,6,2,1)
                                                            (10,4,2,1)
Also the number of integer partitions of 2n+1 covering an initial interval and having even maximum and alternating sum 1.
(End)
		

Crossrefs

Partial sums of A067659.
The following relate to strict integer partitions of 2n+1 of even length with exactly one odd part.
- Allowing any length gives A036469.
- The non-strict version is A306145.
- The version for odd length is A318155 (non-strict: A304620).
- Allowing any number of odd parts gives A343942 (odd bisection of A067661).
A000041 counts partitions.
A027187 counts partitions of even length (strict: A067661).
A078408 counts strict partitions of 2n+1 (odd bisection of A000009).
A103919 counts partitions by sum and alternating sum (reverse: A344612).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= proc(n) option remember; b(n$2, 0)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..60);
  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k - 1))/Product[(1 - x^j), {j, 1, 2 k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] - QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 18 2021 *)

Formula

a(n) = A036469(n) - A318155(n).
a(n) = A318155(n) - A078616(n).
a(n) ~ exp(Pi*sqrt(n/3)) * 3^(1/4) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018

A078407 Number of ways to partition 4*n+2 into distinct positive integers.

Original entry on oeis.org

1, 4, 10, 22, 46, 89, 165, 296, 512, 864, 1426, 2304, 3658, 5718, 8808, 13394, 20132, 29927, 44046, 64234, 92864, 133184, 189586, 267968, 376256, 525016, 728260, 1004544, 1378304, 1881578, 2556284, 3457027, 4654670, 6240974, 8334326
Offset: 0

Views

Author

N. J. A. Sloane, Dec 27 2002

Keywords

Crossrefs

Bisection of A035294. Cf. A078406.
a(n) = t(4*n+2, 0), t as defined in A079211.

Programs

  • Mathematica
    Table[PartitionsQ[4n+2], {n, 0, 40}]

Extensions

More terms from Don Reble, Jan 05 2003

A078409 Number of ways to partition 4*n+1 into distinct positive integers.

Original entry on oeis.org

1, 3, 8, 18, 38, 76, 142, 256, 448, 760, 1260, 2048, 3264, 5120, 7917, 12076, 18200, 27130, 40026, 58499, 84756, 121792, 173682, 245920, 345856, 483330, 671418, 927406, 1274118, 1741521, 2368800, 3207086, 4322816, 5802008, 7755776
Offset: 0

Views

Author

N. J. A. Sloane, Dec 27 2002

Keywords

Crossrefs

Bisection of A078408. Cf. A035294, A000009, A078410.

Formula

a(n) = t(4*n+1, 0), t as defined in A079211.

Extensions

More terms from Reinhard Zumkeller, Dec 28 2002

A318155 Expansion of (1/(1 - x)) * Sum_{k>=0} x^(k*(2*k+1)) / Product_{j=1..2*k} (1 - x^j).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 22, 28, 35, 44, 55, 68, 84, 103, 126, 153, 185, 223, 268, 320, 381, 452, 535, 631, 742, 870, 1018, 1188, 1383, 1607, 1863, 2155, 2489, 2869, 3301, 3792, 4348, 4978, 5691, 6496, 7404, 8428, 9580, 10875, 12330, 13962, 15791, 17840, 20131, 22691
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A067661.
From Gus Wiseman, Jul 29 2021: (Start)
Also the number of strict integer partitions of 2n+1 of odd length with exactly one odd part. For example, the a(1) = 1 through a(7) = 10 partitions are:
(1) (3) (5) (7) (9) (11) (13) (15)
(4,2,1) (4,3,2) (5,4,2) (6,4,3) (6,5,4)
(6,2,1) (6,3,2) (6,5,2) (7,6,2)
(6,4,1) (7,4,2) (8,4,3)
(8,2,1) (8,3,2) (8,5,2)
(8,4,1) (8,6,1)
(10,2,1) (9,4,2)
(10,3,2)
(10,4,1)
(12,2,1)
The following relate to these partitions:
- Not requiring odd length gives A036469.
- The non-strict version is A304620.
- The version for even instead of odd length is A318156.
- Allowing any number of odd parts gives A346634 (bisection of A067659).
(End)

Crossrefs

First differences are A067661 (non-strict: A027187, odd bisection: A343942).
A000041 counts partitions.
A000070 counts partitions with alternating sum 1.
A078408 counts strict partitions of 2n+1 (odd bisection of A000009).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k + 1))/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] + QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 29 2021 *)

Formula

a(n) = A036469(n) - A318156(n).
a(n) = A318156(n) + A078616(n).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018

A323891 a(n) is the number of partitions of 72*n + 42 into 10 odd squares.

Original entry on oeis.org

2, 9, 22, 41, 68, 106, 154, 212, 285, 368, 477, 598, 741, 898, 1076, 1286, 1524, 1785, 2068, 2379, 2741, 3131, 3554, 4002, 4497, 5044, 5644, 6274, 6939, 7653, 8445, 9295, 10186, 11117, 12113, 13192, 14355, 15556, 16807, 18147, 19570, 21089, 22673, 24300, 26029, 27865, 29821, 31822, 33894, 36088
Offset: 0

Views

Author

Marius A. Burtea, Feb 12 2019

Keywords

Examples

			For n=0, 72*0+42 = 42 = 25+9+1+1+1+1+1+1+1+1 = 9+9+9+9+1+1+1+1+1+1, so a(0)=2.
For n=1, 72*1+42 = 114 = 81+25+1+1+1+1+1+1+1+1 = 81+9+9+9+1+1+1+1+1+1 = 49+49+9+1+1+1+1+1+1+1 = 49+25+25+9+1+1+1+1+1+1 = 49+25+9+9+9+9+1+1+1+1 = 49+9+9+9+9+9+9+9+1+1 = 25+25+25+25+9+1+1+1+1+1 = 25+25+25+9+9+9+9+1+1+1 = 25+25+9+9+9+9+9+9+9+1, so a(1)=9.
		

References

  • Laurențiu Panaitopol, Alexandru Gica, Arithmetic problems and number theory, Ed. Gil, Zalău, (2006), ch. 14, p. 85, pr. 32. (in Romanian).

Crossrefs

Programs

  • Magma
    [#RestrictedPartitions(72*n+42, 10, {(2*d+1)^2:d in [0..100]}): n in [0..100]];
  • Maple
    S:= proc(n, k, m)
       option remember;
       local p,j;
       if k = 0 then if n = 0 then return 1 else return 0 fi
       elif m < 1 then return 0
       elif n < k then return 0
       elif n > k*m^2 then return 0
       fi;
       if m^2 > n then
         p:= floor(sqrt(n));
         if p::even then p:= p-1 fi;
         return procname(n, k, p)
       fi;
       add(procname(n-j*m^2,k-j,m-2), j=0..n/m^2)
    end proc:
    seq(S(72*n+42, 10, 72*n+42), n=0..100); # Robert Israel, Feb 24 2019
  • Mathematica
    a[n_] := IntegerPartitions[72n+42, {10}, Select[ Range[1, 72n+42, 2], IntegerQ@Sqrt@#&]] // Length;
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 19 2022 *)

A168431 General number of transpositions of n objects with repetitions.

Original entry on oeis.org

1, 2, 9, 46, 245, 1601
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 25 2009

Keywords

Examples

			a(1)=1!/1!=1 because A035294(1)=1; a(2)=2!/(1!*1!)=2 because A035294(2)=1; a(3)=3!/(1!*1!*1!)+3!/(2!*1!)=9 because A035294(3)=2; a(4)=4!/(1!*1!*1!*1!)+4!/(2!*1!*1!)+4!/(2!*2!)+4!/(3!*1!)=46 because A035294(4)=4; a(5)=5!/(1!*1!*1!*1!*1!)+5!/(2!*1!*1!*1!)+5!/(2!*2!*1!)+5!/(3!*1!*1!)+5!/(3!*2!)+5!/(4!*1!)=245 because A035294(5)=6; a(6)=6!/(1!*1!*1!*1!*1!*1!)+6!/(2!*1!*1!*1!*1!)+6!/(2!*2!*1!*1!)+6!/(2!*2!*2!)+6!/(3!*1!*1!*1!)+6!/(3!*2!*1!)+6!/(3!*3!)+6!/(4!*1!*1!)+6!/(4!*2!)+6!/(5!*1!)=1601 because A035294(6)=10.
		

Crossrefs

Cf. A035294.
Cf. A036038. [From R. J. Mathar, Nov 26 2009]

Formula

Apparently a(n)=A005651(n)-1, n>1. [From R. J. Mathar, Nov 26 2009]
Previous Showing 21-26 of 26 results.