A049375 A convolution triangle of numbers obtained from A034687.
1, 15, 1, 275, 30, 1, 5500, 775, 45, 1, 115500, 19250, 1500, 60, 1, 2502500, 471625, 44625, 2450, 75, 1, 55412500, 11495000, 1254000, 85000, 3625, 90, 1, 1246781250, 279675000, 34093125, 2698875, 143750, 5025, 105, 1, 28398906250, 6802812500
Offset: 1
Examples
{1}; {15,1}; {275,30,1}; {5500,775,45,1}; ...
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Cf. A039746.
Programs
-
Mathematica
a[n_, m_] := Coefficient[Series[((-1 + (1 - 25*x)^(-1/5))/5)^m, {x, 0, n}], x^n]; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 38]] (* Jean-François Alcover, Jun 21 2011, after g.f. *)
Formula
a(n, m) = 5*(5*(n-1)+m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((-1+(1-25*x)^(-1/5))/5)^m.
A132057 A convolution triangle of numbers obtained from A034904.
1, 28, 1, 980, 56, 1, 37730, 2744, 84, 1, 1531838, 130340, 5292, 112, 1, 64337196, 6136956, 299782, 8624, 140, 1, 2766499428, 288408120, 16120314, 568008, 12740, 168, 1, 121034349975, 13561837212, 841627332, 34401528, 956970, 17640, 196, 1
Offset: 1
Comments
Examples
{1}; {28,1}; {980,56,1}; (37730,2744,84,1);...
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First 10 rows.
Programs
-
Mathematica
a[n_, m_] := a[n, m] = 7*(7*(n-1) + m)*a[n-1, m]/n + m*a[n-1, m-1]/n; a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 8}, {m, 1, n}]][[1 ;; 36]] (* Jean-François Alcover, Jun 17 2011 *)
Formula
a(n, m) = 7*(7*(n-1)+m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: ((-1+(1-49*x)^(-1/7))/7)^m.
A035330 5-fold convolution of A001700(n), n >= 0.
1, 15, 140, 1045, 6835, 40963, 230720, 1240740, 6437890, 32468470, 160010280, 773624615, 3680728375, 17274086235, 80119845080, 367821324040, 1673528845710, 7554110698850, 33858536700040, 150802994850570
Offset: 0
Comments
Fifth column of triangular array A035324.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1650
- José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Programs
-
Mathematica
Array[(#^2 + 27 # + 122) Binomial[2 (# + 5), # + 5]/24 - 5 (# + 8)*2^(2 # + 5) &, 20, 0] (* Michael De Vlieger, Sep 04 2018 *)
A134283 A certain partition array in Abramowitz-Stegun (A-St)order, called M_0(3).
1, 3, 1, 10, 6, 1, 35, 20, 9, 9, 1, 126, 70, 60, 30, 27, 12, 1, 462, 252, 210, 100, 105, 180, 27, 40, 54, 15, 1, 1716, 924, 756, 700, 378, 630, 300, 270, 140, 360, 108, 50, 90, 18, 1, 6435, 3432, 2772, 2520, 1225, 1386, 2268, 2100, 945, 900, 504, 1260, 600, 1080, 81
Offset: 1
Comments
For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
Partition number array M_0(3); the k=3 member in the family of a generalization of the multinomial number arrays M_0 = M_0(2) = A048996.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
Examples
[1]; [3,1]; [10,6,1]; [35,20,9,9,1]; [126,70,60,30,27,12,1]; ...
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- W. Lang, First 10 rows and more.
A171488 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A005773(n+1)= 1,2,5,13,35,96,267,...
1, 2, 1, 5, 4, 1, 13, 14, 6, 1, 35, 46, 27, 8, 1, 96, 147, 107, 44, 10, 1, 267, 462, 396, 204, 65, 12, 1, 750, 1437, 1404, 858, 345, 90, 14, 1, 2123, 4438, 4835, 3388, 1625, 538, 119, 16, 1, 6046, 13637, 16305, 12802, 7072, 2805, 791, 152, 18, 1
Offset: 0
Examples
Triangle T(n,k) (0<=k<=n) begins: 1; 2, 1; 5, 4, 1; 13, 14, 6, 1; 35, 46, 27, 8, 1; 96, 147, 107, 44, 10, 1; ...
Programs
-
Maxima
T(n,k)=((k+1)*sum(binomial(2*j+k,j)*(-1)^j*3^(n-j-k)*binomial(n+1,j+k+1),j,0,n-k))/(n+1); /* Vladimir Kruchinin Sep 30 2020 */
Formula
Sum_{k, 0<=k<=n} T(n,k)*x^k = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -2, -1, 0, 1 respectively.
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012
T(n,k) = (k+1)*Sum_{j=0..n-k} C(2*j+k,j)*(-1)^j*3^(n-j-k)*C(n+1,j+k+1)/(n+1). - Vladimir Kruchinin Sep 30 2020
A134284 A certain partition array in Abramowitz-Stegun order (A-St order), called M_0(3)/M_0.
1, 3, 1, 10, 3, 1, 35, 10, 9, 3, 1, 126, 35, 30, 10, 9, 3, 1, 462, 126, 105, 100, 35, 30, 27, 10, 9, 3, 1, 1716, 462, 378, 350, 126, 105, 100, 90, 35, 30, 27, 10, 9, 3, 1, 6435, 1716, 1386, 1260, 1225, 462, 378, 350, 315, 300, 126, 105, 100, 90, 81, 35, 30, 27, 10, 9, 3, 1
Offset: 1
Comments
Examples
[1]; [3,1]; [10,3,1]; [35,10,9,3,1]; [126,35,30,10,9,3,1]; ... a(4,3) = 9 = 3^2 because (2^2) is the k=4 partition of n=4 in A-St order and s2(3,2,1)=3.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- W. Lang, First 10 rows and more.
Formula
A154930 Inverse of Fibonacci convolution array A154929.
1, -2, 1, 5, -4, 1, -15, 14, -6, 1, 51, -50, 27, -8, 1, -188, 187, -113, 44, -10, 1, 731, -730, 468, -212, 65, -12, 1, -2950, 2949, -1956, 970, -355, 90, -14, 1, 12235, -12234, 8291, -4356, 1785, -550, 119, -16, 1, -51822, 51821, -35643, 19474, -8612, 3021
Offset: 0
Comments
Examples
Triangle begins 1, -2, 1, 5, -4, 1, -15, 14, -6, 1, 51, -50, 27, -8, 1, -188, 187, -113, 44, -10, 1, 731, -730, 468, -212, 65, -12, 1, -2950, 2949, -1956, 970, -355, 90, -14, 1 Production array is -2, 1, 1, -2, 1, -1, 1, -2, 1, 1, -1, 1, -2, 1, -1, 1, -1, 1, -2, 1, 1, -1, 1, -1, 1, -2, 1, -1, 1, -1, 1, -1, 1, -2, 1 or ((1-x-x^2)/(1+x),x) beheaded.
Formula
Riordan array ((1/(1+x))c(-x/(1+x)), (x/(1+x))c(x/(1+x))), c(x) the g.f. of A000108;
Riordan array ((sqrt(1+6x+5x^2)-x-1)/(2x(1+x)),(sqrt(1+6x+5x^2)-x-1)/ (2(1+x)));
Triangle T(n,k) = sum{j=0..n, (-1)^(n-k)*C(n,j)*C(2j-k,j-k)(k+1)/(j+1)}.
T(n,k) = T(n-1,k-1) -2*T(n-1,k) + Sum_{i, i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012
A116396 Expansion of 2/((2+x)*sqrt(1-4*x)-x).
1, 2, 7, 25, 93, 353, 1358, 5273, 20614, 81003, 319584, 1264924, 5019743, 19963699, 79541181, 317406302, 1268283199, 5073605801, 20316709251, 81427911966, 326612013623, 1310968893954, 5265285993860, 21158914176719, 85071253608611
Offset: 0
Comments
Diagonal sums of number triangle A116395.
Diagonal sums of the Riordan matrix ((1-sqrt(1-4*x))/(2*x*sqrt(1-4*x)),(1-sqrt(1-4*x))/(2*sqrt(1-4*x))) (A035324). - Emanuele Munarini, Apr 26 2011
Programs
-
Mathematica
CoefficientList[Series[(x+(2+x)Sqrt[1-4x])/(2-6x-8x^2-2x^3),{x,0,25}],x] (* Emanuele Munarini, Apr 26 2011 *)
Formula
a(n) = Sum_{k=0..floor(n/2)} (4^(n-k)/2^k)*Sum_{j=0..k} C(k,j)*C(n-k+(j-1)/2,n-k)*(-1)^(k-j).
D-finite with recurrence: +2*n*a(n) +(-13*n+10)*a(n-1) +(9*n-16)*a(n-2) +2*(19*n-41)*a(n-3) +(23*n-66)*a(n-4) +2*(2*n-7)*a(n-5)=0. - R. J. Mathar, Jan 24 2020
A188110 Triangle T(n,m), [x*A(x)]^m=sum(n>=m T(n,m)*x^n), where A(x) satisfies x*A(x)^3= -(2*x*A(x)^2+sqrt(1-4*x*A(x)^2)-1)/(4*x*A(x)^2+sqrt(1-4*x*A(x)^2)-1).
1, 3, 1, 28, 6, 1, 350, 65, 9, 1, 5020, 868, 111, 12, 1, 78023, 12924, 1581, 166, 15, 1, 1278340, 205766, 24468, 2516, 230, 18, 1, 21740636, 3428438, 399735, 40489, 3700, 303, 21, 1, 380161308, 59034600, 6784186, 679460, 61905, 5160, 385, 24, 1, 6792111260, 1042169972, 118444293, 11759612, 1067738, 89715, 6923, 476, 27, 1
Offset: 1
Links
- Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Crossrefs
Cf. A035324.
Programs
-
Mathematica
(* S = A035324 *) S[n_, m_] /; n >= m >= 1 := S[n, m] = 2(2(n-1) + m)(S[n - 1, m]/n) + m (S[n - 1, m - 1]/n); S[n_, m_] /; n < m = 0; S[n_, 0] = 0; S[1, 1] = 1; T[n_, m_] := m/(2n-m) S[3n - 2m, 2n - m]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 16 2019 *)
Formula
T(n,m) = m/(2*n-m)*A035324(3*n-2*m,2*n-m).
A188109 Triangle T(n,m), [x*A(x)]^m=sum(n>=m T(n,m)*x^n), where A(x) satisfies x*A(x)^2= -(2*x*A(x)+sqrt(1-4*x*A(x))-1)/(4*x*A(x)+sqrt(1-4*x*A(x))-1).
1, 3, 1, 19, 6, 1, 152, 47, 9, 1, 1367, 418, 84, 12, 1, 13195, 4007, 825, 130, 15, 1, 133556, 40368, 8433, 1400, 185, 18, 1, 1398696, 421332, 88872, 15239, 2170, 249, 21, 1, 15029311, 4515706, 959080, 168112, 25100, 3162, 322, 24, 1, 164764985, 49405895, 10547361, 1878462, 289788, 38772, 4403, 404, 27, 1
Offset: 1
Examples
1; 3, 1; 19, 6, 1; 152, 47, 9, 1; 1367, 418, 84, 12, 1; 13195, 4007, 825, 130, 15, 1; 133556, 40368, 8433, 1400, 185, 18, 1; 1398696, 421332, 88872, 15239, 2170, 249, 21, 1
Links
- Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Crossrefs
Cf. A035324
Programs
-
Mathematica
(* S = A035324 *) S[n_, m_] /; n >= m >= 1 := S[n, m] = 2(2(n-1)+m)(S[n-1, m]/n) + m(S[n-1, m-1]/n); S[n_, m_] /; n < m = 0; S[n_, 0] = 0; S[1, 1] = 1; T[n_, m_] := m/n S[2n-m, n]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 16 2019 *)
Formula
T(n,m) = m/n*A035324(2*n-m,n).
Comments