cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A277210 Expansion of Product_{k>=1} 1/(1 - x^(3*k+1)).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 3, 3, 4, 5, 4, 6, 6, 7, 7, 9, 8, 11, 11, 12, 13, 16, 15, 18, 20, 22, 22, 27, 27, 31, 33, 37, 38, 45, 46, 51, 55, 62, 63, 72, 76, 84, 89, 99, 103, 116, 122, 133, 142, 158, 164, 181, 193, 210, 222, 245, 257, 281, 299, 324, 343, 376, 396, 429, 457, 495, 522, 568, 601, 649, 689
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2016

Keywords

Comments

Number of partitions of n into parts larger than 1 and congruent to 1 mod 3.
More generally, the ordinary generating function for the number of partitions of n into parts larger than 1 and congruent to 1 mod m (for m>0) is Product_{k>=1} 1/(1 - x^(m*k+1)).

Examples

			a(14) = 2, because we have [10, 4] and [7, 7].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/QPochhammer[x, x^3], {x, 0, 85}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(3*k+1)).
a(n) ~ Pi^(1/3) * Gamma(1/3) * exp(sqrt(2*n)*Pi/3) / (2^(13/6)*3^(3/2)*n^(7/6)). - Vaclav Kotesovec, Oct 06 2016

A362696 Expansion of e.g.f. Product_{k>0} (1 - x^(3*k-2))^(-1/(3*k-2)).

Original entry on oeis.org

1, 1, 2, 6, 30, 150, 900, 7020, 62460, 562140, 5984280, 67252680, 863165160, 11700148680, 173098134000, 2625661170000, 45310413258000, 782198417206800, 14310269286746400, 280333959468789600, 6002139207488767200, 129820528515538159200, 2934651197018947982400
Offset: 0

Views

Author

Seiichi Manyama, Jul 07 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1,N, (1-x^(3*k-2))^(1/(3*k-2)))))

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A001817(k) * a(n-k)/(n-k)!.

A261631 Expansion of Product_{k>=0} 1/(1-x^(3*k+1))^3.

Original entry on oeis.org

1, 3, 6, 10, 18, 30, 46, 69, 105, 154, 219, 309, 434, 597, 813, 1100, 1476, 1959, 2585, 3387, 4410, 5709, 7353, 9414, 12001, 15231, 19242, 24205, 30348, 37902, 47165, 58500, 72342, 89169, 109599, 134337, 164221, 200226, 243537, 295496, 357732, 432117, 520858
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(3*k+1))^3, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) * Gamma(1/3)^3 / (4 * Pi^2 * sqrt(6*n)).

A261635 Expansion of Product_{k>=0} 1/(1-x^(3*k+1))^4.

Original entry on oeis.org

1, 4, 10, 20, 39, 72, 124, 204, 331, 524, 806, 1216, 1813, 2660, 3846, 5500, 7790, 10916, 15158, 20880, 28544, 38736, 52226, 69972, 93200, 123460, 162700, 213340, 278459, 361860, 468252, 603484, 774844, 991220, 1263576, 1605392, 2033172, 2566972, 3231338
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(3*k+1))^4, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi*sqrt(2*n)/3) * Gamma(1/3)^4 / (8 * 2^(1/12) * sqrt(3) * Pi^(8/3) * n^(5/12)).

A304885 Expansion of Product_{k>=1} 1/(1-x^(3*k-2)) * Product_{k>=1} 1/(1-x^(6*k-1)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 8, 10, 12, 14, 17, 21, 25, 30, 35, 41, 49, 58, 68, 79, 92, 107, 124, 144, 166, 191, 220, 252, 289, 331, 378, 431, 490, 557, 632, 717, 812, 917, 1035, 1167, 1315, 1480, 1663, 1866, 2092, 2344, 2624, 2934, 3277, 3656, 4076, 4542, 5056
Offset: 0

Views

Author

Seiichi Manyama, May 20 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(mul(1/(1-x^(3*k-2)),k=1..n)*mul(1/(1-x^(6*k-1)),k=1..n), x,70),x,n),n=0..60); # Muniru A Asiru, May 21 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1-x^(3*k-2)) * (1-x^(6*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 21 2018 *)

Formula

G.f.: Sum_{j>=0} x^(j*(3*j-1)/2)*(Product_{k=1..j} (1-x^(6*k-4)))/(Product_{k=1..3*j} (1-x^k)).
a(n) ~ exp(Pi*sqrt(n/3)) * Pi^(2/3) / (2 * 3^(2/3) * Gamma(1/3) * n^(5/6)). - Vaclav Kotesovec, May 21 2018
Previous Showing 21-25 of 25 results.