cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A323812 a(n) = n*Fibonacci(n-2) + ((-1)^n + 1)/2.

Original entry on oeis.org

1, 3, 5, 10, 19, 35, 65, 117, 211, 374, 661, 1157, 2017, 3495, 6033, 10370, 17767, 30343, 51681, 87801, 148831, 251758, 425065, 716425, 1205569, 2025675, 3399005, 5696122, 9534331, 15941099, 26625281, 44426877, 74062507, 123360230, 205303933, 341416205, 567353377, 942154863, 1563526761
Offset: 2

Views

Author

Petros Hadjicostas, Sep 01 2019

Keywords

Comments

For n >= 2, a(n) is one-half the number of length n losing strings with a binary alphabet in the "same game".
In the "same game", winning strings are those that can be reduced to the null string by repeatedly removing an entire run of two or more consecutive symbols.
Sequence A035615 counts the winning strings of length n in a binary alphabet in the "same game", while A309874 counts the losing strings.
Thus, a(n) = A309874(n)/2 for n >= 2. The reason sequence A309874 is divisible by 2 is because the complement of every winning string is also a winning string (where by "complement" we mean 0 is replaced with 1 and vice versa).

Examples

			11011001 is a winning string because 110{11}001 -> 11{000}1 -> {111} -> null. Its complement, 00100110 is also a winning string because 001{00}110 -> 00{111}0 -> {000} -> null.
		

Crossrefs

Programs

  • Mathematica
    Table[n Fibonacci[n-2]+((-1)^n+1)/2,{n,2,40}] (* Harvey P. Dale, Sep 17 2019 *)

Formula

a(n) = A309874(n)/2 for n >= 2.

A324128 a(n) = 2*n*Fibonacci(n) + (-1)^n + 1.

Original entry on oeis.org

2, 2, 6, 12, 26, 50, 98, 182, 338, 612, 1102, 1958, 3458, 6058, 10558, 18300, 31586, 54298, 93026, 158878, 270602, 459732, 779286, 1318222, 2225666, 3751250, 6312438, 10606572, 17797418, 29825282, 49922402, 83468678, 139411778, 232622148, 387796318, 645922550, 1074985346, 1787678458, 2970700846
Offset: 0

Views

Author

N. J. A. Sloane, Feb 20 2019

Keywords

Comments

This sequence is distantly related to the number of losing strings using a binary alphabet in the "same game" described by Burns and Purcell (2007) and Kurz (2001). - Petros Hadjicostas, Sep 01 2019

Crossrefs

Programs

  • Mathematica
    A324128[n_]:=Fibonacci[n]2n+(-1)^n+1;Array[A324128,50,0] (* Paolo Xausa, Nov 15 2023 *)
  • PARI
    Vec(2*(1 - x - x^2 + 2*x^3 + x^4 - x^5) / ((1 - x)*(1 + x)*(1 - x - x^2)^2) + O(x^40)) \\ Colin Barker, Mar 03 2019

Formula

From Chai Wah Wu, Feb 20 2019: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) for n > 5.
G.f.: (2*x^5 - 2*x^4 - 4*x^3 + 2*x^2 + 2*x - 2)/((x - 1)*(x + 1)*(x^2 + x - 1)^2). (End)
From Petros Hadjicostas, Sep 01 2019: (Start)
a(n) = 2*A324129(n) for n >= 0.
a(n) = A309874(n) + 2*A099920(n-1) = 2^n - A035615(n) + 2*A099920(n-1) for n >= 2.[Here A309874 counts the losing strings while A035615 counts the winning strings using a binary alphabet in the "same game". See Burns and Purcell (2007) and Kurz (2001).]
(End)

A324129 a(n) = n*Fibonacci(n) + ((-1)^n + 1)/2.

Original entry on oeis.org

1, 1, 3, 6, 13, 25, 49, 91, 169, 306, 551, 979, 1729, 3029, 5279, 9150, 15793, 27149, 46513, 79439, 135301, 229866, 389643, 659111, 1112833, 1875625, 3156219, 5303286, 8898709, 14912641, 24961201, 41734339, 69705889, 116311074, 193898159, 322961275
Offset: 0

Views

Author

N. J. A. Sloane, Feb 20 2019

Keywords

Comments

Equals A324128(n)/2.
This sequence is distantly related to (one-half) the number of losing strings using a binary alphabet in the "same game" described by Burns and Purcell (2007) and Kurz (2001). - Petros Hadjicostas, Sep 01 2019

Crossrefs

Programs

  • Magma
    [n*Fibonacci(n)+((-1)^n+1)/2:n in [0..35]]; // Marius A. Burtea, Aug 29 2019
  • Mathematica
    A324129[n_]:=Fibonacci[n]n+((-1)^n+1)/2;Array[A324129,50,0] (* Paolo Xausa, Nov 15 2023 *)
  • PARI
    Vec((1 - x - x^2 + 2*x^3 + x^4 - x^5) / ((1 - x)*(1 + x)*(1 - x - x^2)^2) + O(x^40)) \\ Colin Barker, Mar 03 2019
    

Formula

From Chai Wah Wu, Feb 20 2019: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) for n > 5.
G.f.: (x^5 - x^4 - 2*x^3 + x^2 + x - 1)/((x - 1)*(x + 1)*(x^2 + x - 1)^2). (End)
a(n) = A309874(n)/2 + A099920(n-1) = 2^(n-1) - A035615(n)/2 + A099920(n-1) = A323812(n) + A099920(n-1) for n >= 2. [Sequence A309874 counts the losing strings while A035615 counts the winning strings using a binary alphabet in the "same game". See Burns and Purcell (2007) and Kurz (2001).] - Petros Hadjicostas, Sep 01 2019
Previous Showing 11-13 of 13 results.