cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A225846 Denominator of c(n) = 2^(2*n)*(2^(2*n) - 1)/(2*n)!, a coefficient used in the expansion of tan(x) as Sum_{n>=1} c(n)*|Bernoulli(2*n)|*x^(2*n-1).

Original entry on oeis.org

1, 1, 1, 5, 21, 4725, 1485, 14189175, 42567525, 516891375, 11249435925, 714620417135625, 2124921731625, 16025362854266390625, 605758715891269565625, 5703572324950265390625, 480509193164339417203125, 22913080876041525109331015625, 92765509619601316232109375
Offset: 0

Views

Author

Jean-François Alcover, May 17 2013

Keywords

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 63.

Crossrefs

Cf. A225845 (numerators), A000367, A002445, A002430, A036279.

Programs

  • Magma
    [Denominator(2^(2*n)*(2^(2*n)-1)/Factorial(2*n)): n in [0..20]]; // Vincenzo Librandi, Jul 17 2013
  • Mathematica
    Table[2^(2*n)*(2^(2*n)-1)/(2*n)! // Denominator, {n, 0, 20}]

A360945 a(n) = numerator of (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) where Zeta is the Hurwitz zeta function.

Original entry on oeis.org

1, 2, 10, 244, 554, 202084, 2162212, 1594887848, 7756604858, 9619518701764, 59259390118004, 554790995145103208, 954740563911205348, 32696580074344991138888, 105453443486621462355224, 7064702291984369672858925136, 4176926860695042104392112698
Offset: 0

Views

Author

Artur Jasinski, Feb 26 2023

Keywords

Comments

The function (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) is rational for every positive integer n.
For denominators see A360966.
(Zeta(2*n+1,1/4) + Zeta(2*n+1,3/4))/Zeta(2*n+1) = 4*16^n - 2*4^n; see A193475.
For numerators of the function (Zeta(2*n,1/4) + Zeta(2*n,3/4))/Pi^(2*n) see A361007.
For denominators of the function (Zeta(2*n,1/4) + Zeta(2*n,3/4))/Pi^(2*n) see A036279.
(Zeta(2*n,1/4) - Zeta(2*n,3/4))/beta(2*n) = 16^n (see A001025) where beta is the Dirichlet beta function.
From the above formulas we can express Zeta(k,1/4) and Zeta(k,3/4) for every positive integer k.

Examples

			a(0) = 1 because lim_{n->0} (Zeta(2*n+1,1/4) - Zeta(2*n+1,3/4))/Pi^(2*n+1) = 1.
a(3) = 244 because (Zeta(2*3+1,1/4) - Zeta(2*3+1,3/4))/Pi^(2*3+1) = 244/45.
		

Crossrefs

Programs

  • Mathematica
    Table[(Zeta[2*n + 1, 1/4] - Zeta[2*n + 1, 3/4]) / Pi^(2*n + 1), {n, 1, 25}] // FunctionExpand // Numerator (* Vaclav Kotesovec, Feb 27 2023 *)
    t[0, 1] = 1; t[0, _] = 0;
    t[n_, k_] := t[n, k] = (k-1) t[n-1, k-1] + (k+1) t[n-1, k+1];
    a[n_] := Sum[t[2n, k]/(2n)!, {k, 0, 2n+1}] // Numerator;
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 15 2023 *)
    a[n_] := SeriesCoefficient[Tan[x+Pi/4], {x, 0, 2n}] // Numerator;
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 15 2023 *)
  • PARI
    a(n) = numerator(abs(eulerfrac(2*n))*(2*n + 1)*2^(2*n)/(2*n + 1)!); \\ Michel Marcus, Apr 11 2023

Formula

a(n) = A046982(2*n).
(Zeta(2*n + 1, 1/4) - Zeta(2*n + 1, 3/4))/(Pi^(2*n + 1)) = A000364(n)*(2*n + 1)*2^(2*n)/(2*n + 1)!.

A361007 a(n) = numerator of (zeta(2*n,1/4) + zeta(2*n,3/4))/Pi^(2*n) where zeta is the Hurwitz zeta function.

Original entry on oeis.org

0, 2, 8, 64, 2176, 31744, 2830336, 178946048, 30460116992, 839461371904, 232711080902656, 39611984424992768, 955693069653508096, 1975371841521663868928, 1124025625663103358205952, 369906947004953565463576576, 278846808228005417477465964544
Offset: 0

Views

Author

Artur Jasinski, Mar 15 2023

Keywords

Comments

The function (zeta(2*n,1/4) + zeta(2*n,3/4))/Pi^(2*n) is rational for every positive integer n.

Examples

			tan(2*x) = 2*x + (8/3)*x^3 + (64/15)*x^5 + (2176/315)*x^7 + (31744/2835)*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[(Zeta[2*n, 1/4] + Zeta[2*n, 3/4])/Pi^(2*n), {n, 0, 25}] //
      FunctionExpand // Numerator
    Table[4^(2 k) (2^(2 k) - 1) (-1)^(k + 1) BernoulliB[2 k]/(2 (2 k)!), {k, 0, 25}] // Numerator
  • PARI
    my(x='x+O('x^50), v = Vec(tan(2*x)/x)); apply(numerator, vector(#v\2, k, v[2*k-1])) \\ Michel Marcus, Apr 09 2023

Formula

a(n) = numerator( [x^(2*n-1)] tan(2*x) ).
a(n) = numerator( (-1)^(n + 1)*4^(2*n)*(2^(2*n) - 1)*B(2*n)/(2*(2*n)!) ) where B(2*n) are Bernoulli numbers.

A367519 Denominators of even-numbered Maclaurin coefficients of sqrt(tan(x)/x).

Original entry on oeis.org

1, 6, 360, 3024, 1814400, 887040, 72648576000, 784604620800, 13857951744000, 196503623737344000, 8430005458332057600000, 1249560422395084800000, 747275354440475148288000000, 25197383852207757066240000, 2105181427080881417748480000000, 154617478967448121358942208000000
Offset: 0

Views

Author

Robert Israel, Nov 21 2023

Keywords

Comments

Denominators of Maclaurin coefficients of sqrt(tan(sqrt(x)))/x^(1/4).

Examples

			sqrt(tan(x)/x) = 1 + (1/6) * x^2 + (19/360) * x^4 + (55/3024) * x^6 + ...
		

Crossrefs

Programs

  • Maple
    S:= series(sqrt(tan(x)/x), x, 41):
    seq(denom(coeff(S,x,i)),i=0..40,2);

Formula

sqrt(tan(x)/x) = Sum_{k=0..oo} A367518(k)/a(k) * x^(2*k).

A226180 Denominators in Taylor series for integral of tan(x)/x.

Original entry on oeis.org

1, 9, 75, 2205, 25515, 1715175, 79053975, 9577693125, 184530220875, 35266981624875, 4092826025413125, 66711917764366875, 92454016466921484375, 35047468562280596296875, 7641646200968365570359375, 3798425171964103092990703125, 133435000395771234460221796875
Offset: 1

Views

Author

Jean-François Alcover, May 30 2013

Keywords

Comments

Numerators are the same as those from the expansion of tan(x).
Unlike the "sine integral" function Si(x), it seems that there does not exist a "tan integral" function.

Crossrefs

Cf. A002430 (Numerators for tan(x)), A036279 (Denominators for tan(x)), A000367, A002445.

Programs

  • Mathematica
    a[n_] := Denominator[(-1)^(n-1)*4^n*(4^n-1)*BernoulliB[2*n]/(2*n)!]*(2*n-1); Table[a[n], {n, 1, 17}]

Formula

A036279(n)*(2n-1).
Previous Showing 11-15 of 15 results.