cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A279172 The autosequence of the first kind between A226158(n) and A278331(n).

Original entry on oeis.org

0, 1, 1, -1, -3, 3, 17, -17, -155, 155, 2073, -2073, -38227, 38227, 929569, -929569, -28820619, 28820619, 1109652905, -1109652905, -51943281731, 51943281731, 2905151042481, -2905151042481, -191329672483963, 191329672483963, 14655626154768697, -14655626154768697
Offset: 0

Views

Author

Keywords

Comments

Peter Luschny introduced the extended Genocchi numbers A226158(n), an autosequence of the first kind. They are linked to the second Bernoulli numbers B+(n) = A164555(n)/A027642(n). Here + is an exponent.
This yields the possible Genocchi twin numbers: -1, -1 followed by a(n).

Crossrefs

Programs

  • Mathematica
    a[n_] := (n+2)*EulerE[n+1, 0] - (n+1)*EulerE[n, 0]; a[0] = 0; Table[a[n], {n, 0, 30}] (* or: *)
    Join[{0}, Array[#*EulerE[#-1, 0]&, 32] // Differences // Rest]

Formula

a(n) = A226158(n+2) - A226158(n+1).
a(n) = 2*(2^(n+1) -1)*B+(n+1) -2*(2^(n+2) -1)*B+(n+2).

A364199 Expansion of e.g.f. 2*x/(exp(-2*x)+exp(x)).

Original entry on oeis.org

0, 1, 1, -6, -13, 110, 363, -4214, -18581, 276678, 1525355, -27753022, -183611829, 3948004606, 30473073547, -756031185030, -6669149100757, 187521633674294, 1860949703300139, -58481734930175438, -644853406058229365, 22398157925324204142, 271672536688626976331, -10334883450918076967446
Offset: 0

Views

Author

F. Chapoton, Jul 13 2023

Keywords

Comments

The terms with even indices are related to Bernoulli numbers. For example, 183611829 = 3 * 23 * 691 * 3851 and 6669149100757 = 11^2 * 13 * 257 * 3617 * 4561.
The terms with odd indices are related to the generalized Bernoulli numbers attached to the primitive Dirichlet character of period 3 (see A002111).

Crossrefs

Very similar to the Genocchi numbers A036968.
Related to A156179 and A002111.

Programs

  • PARI
    my(N=25, x='x+O('x^N)); Vec(serlaplace(2*x/(exp(-2*x)+exp(x))), -N) \\ Michel Marcus, Jul 15 2023
  • Sage
    x = PowerSeriesRing(QQ, 'x').gen()
    N = 20
    f = (2*x/((-2*x).exp(N)+(x).exp(N))).egf_to_ogf()
    print(list(f))
    

Formula

E.g.f.: 2*x/(exp(-2*x)+exp(x)).
Previous Showing 31-32 of 32 results.