A373954
Excess run-compression of standard compositions. Sum of all parts minus sum of compressed parts of the n-th integer composition in standard order.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 2, 1, 1, 1, 2, 4, 0, 0, 0, 1, 3, 0, 0, 2, 0, 0, 4, 3, 0, 0, 1, 3, 0, 0, 0, 1, 0, 2, 0, 2, 1, 1, 3, 2, 2, 2, 3, 5, 0, 0, 0, 1, 0, 0, 0, 2, 0, 3, 2, 1, 0, 0, 1, 3, 0, 0, 0, 1, 2, 4, 2
Offset: 0
The excess compression of (2,1,1,3) is 1, so a(92) = 1.
Compression of standard compositions is
A373953.
A037201 gives compression of first differences of primes, halved
A373947.
A066099 lists the parts of all compositions in standard order.
A114901 counts compositions with no isolated parts.
A240085 counts compositions with no unique parts.
A333627 takes the rank of a composition to the rank of its run-lengths.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[Total[stc[n]]-Total[First/@Split[stc[n]]],{n,0,100}]
A373951
Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of n - k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 2, 1, 1, 0, 7, 4, 4, 0, 1, 0, 14, 5, 6, 5, 1, 1, 0, 23, 14, 10, 10, 6, 0, 1, 0, 39, 26, 29, 12, 14, 6, 1, 1, 0, 71, 46, 54, 40, 19, 16, 9, 0, 1, 0, 124, 92, 96, 82, 64, 22, 22, 8, 1, 1, 0, 214, 176, 204, 144, 137, 82, 30, 26, 10, 0, 1, 0
Offset: 0
Triangle begins:
1
1 0
1 1 0
3 0 1 0
4 2 1 1 0
7 4 4 0 1 0
14 5 6 5 1 1 0
23 14 10 10 6 0 1 0
39 26 29 12 14 6 1 1 0
71 46 54 40 19 16 9 0 1 0
124 92 96 82 64 22 22 8 1 1 0
Row n = 6 counts the following compositions:
(6) (411) (3111) (33) (222) (111111) .
(51) (114) (1113) (2211)
(15) (1311) (1221) (1122)
(42) (1131) (12111) (21111)
(24) (2112) (11211) (11112)
(141) (11121)
(321)
(312)
(231)
(213)
(132)
(123)
(2121)
(1212)
For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,2).
Column k = 0 is
A003242 (anti-runs or compressed compositions).
Same as
A373949 with rows reversed.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length
A116608.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.
Cf.
A037201 (halved
A373947),
A106356,
A124762,
A238130,
A238279,
A238343,
A285981,
A333213,
A333382,
A333489,
A373952.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], Total[First/@Split[#]]==n-k&]],{n,0,10},{k,0,n}]
A374251
Irregular triangle read by rows where row n is the run-compression of the n-th composition in standard order.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 5, 4, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 2, 2, 1, 1, 4, 1, 3, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 6, 5, 1, 4, 2, 4, 1, 3, 3, 2, 1, 3, 1, 2, 3, 1, 2, 4, 2, 3, 1, 2, 2, 1, 2, 1, 3
Offset: 1
The standard compositions and their run-compressions begin:
0: () --> ()
1: (1) --> (1)
2: (2) --> (2)
3: (1,1) --> (1)
4: (3) --> (3)
5: (2,1) --> (2,1)
6: (1,2) --> (1,2)
7: (1,1,1) --> (1)
8: (4) --> (4)
9: (3,1) --> (3,1)
10: (2,2) --> (2)
11: (2,1,1) --> (2,1)
12: (1,3) --> (1,3)
13: (1,2,1) --> (1,2,1)
14: (1,1,2) --> (1,2)
15: (1,1,1,1) --> (1)
Row n has
A334028(n) distinct elements.
Rows are ranked by
A373948 (standard order).
A003242 counts run-compressed compositions, i.e., anti-runs, ranks
A333489.
A007947 (squarefree kernel) represents run-compression of multisets.
A066099 lists the parts of compositions in standard order.
A116861 counts partitions by sum of run-compression.
A373949 counts compositions by sum of run-compression, opposite
A373951.
Cf.
A000120,
A070939,
A106356,
A124762,
A233564,
A238130,
A238343,
A272919,
A333381,
A333382,
A333627,
A373954,
A374250.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[First/@Split[stc[n]],{n,100}]
A376305
Run-compression of the sequence of first differences of squarefree numbers.
Original entry on oeis.org
1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3
Offset: 1
The sequence of squarefree numbers (A005117) is:
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
The run-compression is A376305 (this sequence).
This is the run-compression of first differences of
A005117.
For prime instead of squarefree numbers we have
A037201, halved
A373947.
For run-lengths instead of compression we have
A376306.
For run-sums instead of compression we have
A376307.
For prime-powers instead of squarefree numbers we have
A376308.
For positions of first appearances instead of compression we have
A376311.
The version for nonsquarefree numbers is
A376312.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A007674,
A053797,
A053806,
A061398,
A072284,
A112925,
A112926,
A120992,
A274174,
A373197,
A373198,
A375707,
A375708.
A376312
Run-compression of first differences (A078147) of nonsquarefree numbers (A013929).
Original entry on oeis.org
4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 4, 1, 3, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 2, 1, 3, 4, 2, 4, 1, 2, 1, 3, 1, 4, 1, 3, 4, 2, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 3, 2, 4, 1, 3, 4, 2, 3, 1, 3, 1, 4, 1, 3, 2, 1, 3, 4, 2
Offset: 1
The sequence of nonsquarefree numbers (A013929) is:
4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
(4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
and run-compression (A376312):
4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, ...
For nonprime instead of squarefree numbers we have
A037201, halved
A373947.
For run-sums instead of compression we have
A376264.
For squarefree instead of nonsquarefree we have
A376305, ones
A376342.
For prime-powers instead of nonsquarefree numbers we have
A376308.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A007674,
A053797,
A053806,
A072284,
A112925,
A120992,
A274174,
A373198,
A375707,
A376306,
A376307,
A376311.
A376340
Sorted positions of first appearances in A057820, the sequence of first differences of prime-powers.
Original entry on oeis.org
1, 4, 9, 12, 18, 24, 34, 47, 60, 79, 117, 178, 198, 206, 215, 244, 311, 402, 465, 614, 782, 1078, 1109, 1234, 1890, 1939, 1961, 2256, 2290, 3149, 3377, 3460, 3502, 3722, 3871, 4604, 4694, 6634, 8073, 8131, 8793, 12370, 12661, 14482, 14990, 15912, 17140, 19166
Offset: 1
The terms together with their prime indices begin:
1: {}
4: {1,1}
9: {2,2}
12: {1,1,2}
18: {1,2,2}
24: {1,1,1,2}
34: {1,7}
47: {15}
60: {1,1,2,3}
79: {22}
117: {2,2,6}
178: {1,24}
198: {1,2,2,5}
206: {1,27}
215: {3,14}
244: {1,1,18}
For compression instead of sorted firsts we have
A376308.
For run-lengths instead of sorted firsts we have
A376309.
For run-sums instead of sorted firsts we have
A376310.
The version for squarefree numbers is the unsorted version of
A376311.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A001597,
A006549,
A007916,
A025475,
A037201,
A053289,
A078147,
A110969,
A120430,
A174965,
A373948,
A375706.
-
q=Differences[Select[Range[100],PrimePowerQ]];
Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]
A373821
Run-lengths of run-lengths of first differences of odd primes.
Original entry on oeis.org
1, 11, 1, 19, 1, 1, 1, 5, 1, 6, 1, 16, 1, 27, 1, 3, 1, 1, 1, 6, 1, 9, 1, 29, 1, 2, 1, 18, 1, 1, 1, 5, 1, 3, 1, 17, 1, 19, 1, 30, 1, 17, 1, 46, 1, 17, 1, 27, 1, 30, 1, 5, 1, 36, 1, 41, 1, 10, 1, 31, 1, 44, 1, 4, 1, 14, 1, 6, 1, 2, 1, 32, 1, 13, 1, 17, 1, 5
Offset: 1
The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with run-lengths:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, ...
with run-lengths a(n).
A001223 gives differences of consecutive primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.
A373947
Halved and run-compressed first differences of consecutive odd primes.
Original entry on oeis.org
1, 2, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 2, 3, 4, 2, 1, 2, 1, 2, 7, 2, 3, 1, 5, 1, 3, 2, 3, 1, 5, 1, 2, 1, 6, 2, 1, 2, 3, 1, 5, 3, 1, 3, 2, 1, 5, 7, 2, 1, 2, 7, 3, 5, 1, 2, 3, 4, 3, 2, 3, 4, 2, 4, 5, 1, 5, 1, 3, 2, 3, 4, 2, 1, 2, 6, 4, 2, 4, 2, 3
Offset: 1
The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, ...
with differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, ...
with run-compression:
2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, ...
which is 2*a(n).
A003242,
A114901,
A116608,
A116861,
A238279,
A240085,
A333755,
A373948,
A373949,
A373951,
A373953,
A373954.
A376308
Run-compression of the sequence of first differences of prime-powers.
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 2, 4, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 4, 2, 6, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 4, 2, 4, 6, 2, 8, 5, 1, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 4, 2, 4, 6, 2, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1
The sequence of prime-powers (A246655) is:
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, ...
The sequence of first differences (A057820) of prime-powers is:
1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, ...
The run-compression is A376308 (this sequence).
For squarefree numbers instead of prime-powers we have
A376305.
For run-lengths instead of compression we have
A376309.
For run-sums instead of compression we have
A376310.
A116861 counts partitions by compressed sum, by compressed length
A116608.
A373948 encodes compression using compositions in standard order.
Cf.
A001597,
A006549,
A007916,
A025475,
A034296,
A053289,
A076259,
A110969,
A120430,
A124767,
A174965,
A374251.
A373820
Run-lengths (differing by 0) of antirun-lengths (differing by > 2) of odd primes.
Original entry on oeis.org
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1
The antiruns of odd primes (differing by > 2) begin:
3
5
7 11
13 17
19 23 29
31 37 41
43 47 53 59
61 67 71
73 79 83 89 97 101
103 107
109 113 127 131 137
139 149
151 157 163 167 173 179
181 191
193 197
199 211 223 227
229 233 239
241 251 257 263 269
271 277 281
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, ...
with runs:
1 1
2 2
3 3
4
3
6
2
5
2
6
2 2
4
3
5
3
4
with lengths a(n).
A001223 gives differences of consecutive primes, run-lengths
A333254, run-lengths of run-lengths
A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
Comments