A373949
Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of k.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 2, 4, 0, 1, 0, 4, 4, 7, 0, 1, 1, 5, 6, 5, 14, 0, 1, 0, 6, 10, 10, 14, 23, 0, 1, 1, 6, 14, 12, 29, 26, 39, 0, 1, 0, 9, 16, 19, 40, 54, 46, 71, 0, 1, 1, 8, 22, 22, 64, 82, 96, 92, 124, 0, 1, 0, 10, 26, 30, 82, 137, 144, 204, 176, 214
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 1 0 3
0 1 1 2 4
0 1 0 4 4 7
0 1 1 5 6 5 14
0 1 0 6 10 10 14 23
0 1 1 6 14 12 29 26 39
0 1 0 9 16 19 40 54 46 71
0 1 1 8 22 22 64 82 96 92 124
0 1 0 10 26 30 82 137 144 204 176 214
0 1 1 11 32 31 121 186 240 331 393 323 378
Row n = 6 counts the following compositions:
. (111111) (222) (33) (3111) (411) (6)
(2211) (1113) (114) (51)
(1122) (1221) (1311) (15)
(21111) (12111) (1131) (42)
(11112) (11211) (2112) (24)
(11121) (141)
(321)
(312)
(231)
(213)
(132)
(123)
(2121)
(1212)
For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,4).
Column k = n is
A003242 (anti-runs or compressed compositions).
Same as
A373951 with rows reversed.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length
A116608.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#]]==k&]], {n,0,10},{k,0,n}]
-
T_xy(row_max) = {my(N=row_max+1, x='x+O('x^N), h=1/(1-sum(i=1,N, (y^i*x^i)/(1+x^i*(y^i-1))))); vector(N, n, Vecrev(polcoeff(h, n-1)))}
T_xy(13) \\ John Tyler Rascoe, Mar 20 2025
A373948
Run-compression encoded as a transformation of compositions in standard order.
Original entry on oeis.org
0, 1, 2, 1, 4, 5, 6, 1, 8, 9, 2, 5, 12, 13, 6, 1, 16, 17, 18, 9, 20, 5, 22, 5, 24, 25, 6, 13, 12, 13, 6, 1, 32, 33, 34, 17, 4, 37, 38, 9, 40, 41, 2, 5, 44, 45, 22, 5, 48, 49, 50, 25, 52, 13, 54, 13, 24, 25, 6, 13, 12, 13, 6, 1, 64, 65, 66, 33, 68, 69, 70, 17, 72
Offset: 0
The standard compositions and their compressions begin:
0: () --> 0: ()
1: (1) --> 1: (1)
2: (2) --> 2: (2)
3: (1,1) --> 1: (1)
4: (3) --> 4: (3)
5: (2,1) --> 5: (2,1)
6: (1,2) --> 6: (1,2)
7: (1,1,1) --> 1: (1)
8: (4) --> 8: (4)
9: (3,1) --> 9: (3,1)
10: (2,2) --> 2: (2)
11: (2,1,1) --> 5: (2,1)
12: (1,3) --> 12: (1,3)
13: (1,2,1) --> 13: (1,2,1)
14: (1,1,2) --> 6: (1,2)
15: (1,1,1,1) --> 1: (1)
Sum of standard composition for a(n) is given by
A373953, length
A124767.
A037201 gives compression of first differences of primes, halved
A373947.
A066099 lists the parts of all compositions in standard order.
A114901 counts compositions with no isolated parts.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
Table[stcinv[First/@Split[stc[n]]],{n,0,30}]
A373953
Sum of run-compression of the n-th integer composition in standard order.
Original entry on oeis.org
0, 1, 2, 1, 3, 3, 3, 1, 4, 4, 2, 3, 4, 4, 3, 1, 5, 5, 5, 4, 5, 3, 5, 3, 5, 5, 3, 4, 4, 4, 3, 1, 6, 6, 6, 5, 3, 6, 6, 4, 6, 6, 2, 3, 6, 6, 5, 3, 6, 6, 6, 5, 6, 4, 6, 4, 5, 5, 3, 4, 4, 4, 3, 1, 7, 7, 7, 6, 7, 7, 7, 5, 7, 4, 5, 6, 7, 7, 6, 4, 7, 7, 7, 6, 5, 3, 5
Offset: 0
The standard compositions and their compressions and compression sums begin:
0: () --> () --> 0
1: (1) --> (1) --> 1
2: (2) --> (2) --> 2
3: (1,1) --> (1) --> 1
4: (3) --> (3) --> 3
5: (2,1) --> (2,1) --> 3
6: (1,2) --> (1,2) --> 3
7: (1,1,1) --> (1) --> 1
8: (4) --> (4) --> 4
9: (3,1) --> (3,1) --> 4
10: (2,2) --> (2) --> 2
11: (2,1,1) --> (2,1) --> 3
12: (1,3) --> (1,3) --> 4
13: (1,2,1) --> (1,2,1) --> 4
14: (1,1,2) --> (1,2) --> 3
15: (1,1,1,1) --> (1) --> 1
Counting partitions by this statistic gives
A116861, by length
A116608.
A037201 gives compression of first differences of primes, halved
A373947.
A066099 lists the parts of all compositions in standard order.
A114901 counts compositions with no isolated parts.
A240085 counts compositions with no unique parts.
Cf.
A106356,
A124762,
A238130,
A238343,
A272919,
A285981,
A333381,
A333382,
A333627,
A373952,
A373954.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[Total[First/@Split[stc[n]]],{n,0,100}]
A037201
Differences between consecutive primes (A001223) but with repeats omitted.
Original entry on oeis.org
1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 4, 6, 2, 10, 2, 4, 2, 12, 4, 2, 4, 6, 2, 10, 6, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4
Offset: 1
This is the run-compression of
A001223 = first differences of
A000040.
The repeats were at positions
A064113 before being omitted.
Adding up runs instead of compressing them gives
A373822.
For prime-powers instead of prime numbers we have
A376308.
A003242 counts compressed compositions.
A333254 lists run-lengths of differences between consecutive primes.
A373948 encodes compression using compositions in standard order.
Cf.
A007921,
A030173,
A053289,
A106356,
A114901,
A116608,
A116861,
A124767,
A238130,
A333755,
A335406,
A373954.
-
a037201 n = a037201_list !! (n-1)
a037201_list = f a001223_list where
f (x:xs@(x':_)) | x == x' = f xs
| otherwise = x : f xs
-- Reinhard Zumkeller, Feb 27 2012
-
Flatten[Split[Differences[Prime[Range[150]]]]/.{(k_)..}:>k] (* based on a program by Harvey P. Dale, Jun 21 2012 *)
-
t=0;p=2;forprime(q=3,1e3,if(q-p!=t,print1(q-p", "));t=q-p;p=q) \\ Charles R Greathouse IV, Feb 27 2012
A373954
Excess run-compression of standard compositions. Sum of all parts minus sum of compressed parts of the n-th integer composition in standard order.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 2, 1, 1, 1, 2, 4, 0, 0, 0, 1, 3, 0, 0, 2, 0, 0, 4, 3, 0, 0, 1, 3, 0, 0, 0, 1, 0, 2, 0, 2, 1, 1, 3, 2, 2, 2, 3, 5, 0, 0, 0, 1, 0, 0, 0, 2, 0, 3, 2, 1, 0, 0, 1, 3, 0, 0, 0, 1, 2, 4, 2
Offset: 0
The excess compression of (2,1,1,3) is 1, so a(92) = 1.
Compression of standard compositions is
A373953.
A037201 gives compression of first differences of primes, halved
A373947.
A066099 lists the parts of all compositions in standard order.
A114901 counts compositions with no isolated parts.
A240085 counts compositions with no unique parts.
A333627 takes the rank of a composition to the rank of its run-lengths.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[Total[stc[n]]-Total[First/@Split[stc[n]]],{n,0,100}]
A373951
Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of n - k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 2, 1, 1, 0, 7, 4, 4, 0, 1, 0, 14, 5, 6, 5, 1, 1, 0, 23, 14, 10, 10, 6, 0, 1, 0, 39, 26, 29, 12, 14, 6, 1, 1, 0, 71, 46, 54, 40, 19, 16, 9, 0, 1, 0, 124, 92, 96, 82, 64, 22, 22, 8, 1, 1, 0, 214, 176, 204, 144, 137, 82, 30, 26, 10, 0, 1, 0
Offset: 0
Triangle begins:
1
1 0
1 1 0
3 0 1 0
4 2 1 1 0
7 4 4 0 1 0
14 5 6 5 1 1 0
23 14 10 10 6 0 1 0
39 26 29 12 14 6 1 1 0
71 46 54 40 19 16 9 0 1 0
124 92 96 82 64 22 22 8 1 1 0
Row n = 6 counts the following compositions:
(6) (411) (3111) (33) (222) (111111) .
(51) (114) (1113) (2211)
(15) (1311) (1221) (1122)
(42) (1131) (12111) (21111)
(24) (2112) (11211) (11112)
(141) (11121)
(321)
(312)
(231)
(213)
(132)
(123)
(2121)
(1212)
For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,2).
Column k = 0 is
A003242 (anti-runs or compressed compositions).
Same as
A373949 with rows reversed.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length
A116608.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.
Cf.
A037201 (halved
A373947),
A106356,
A124762,
A238130,
A238279,
A238343,
A285981,
A333213,
A333382,
A333489,
A373952.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], Total[First/@Split[#]]==n-k&]],{n,0,10},{k,0,n}]
A374251
Irregular triangle read by rows where row n is the run-compression of the n-th composition in standard order.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 5, 4, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 2, 2, 1, 1, 4, 1, 3, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 6, 5, 1, 4, 2, 4, 1, 3, 3, 2, 1, 3, 1, 2, 3, 1, 2, 4, 2, 3, 1, 2, 2, 1, 2, 1, 3
Offset: 1
The standard compositions and their run-compressions begin:
0: () --> ()
1: (1) --> (1)
2: (2) --> (2)
3: (1,1) --> (1)
4: (3) --> (3)
5: (2,1) --> (2,1)
6: (1,2) --> (1,2)
7: (1,1,1) --> (1)
8: (4) --> (4)
9: (3,1) --> (3,1)
10: (2,2) --> (2)
11: (2,1,1) --> (2,1)
12: (1,3) --> (1,3)
13: (1,2,1) --> (1,2,1)
14: (1,1,2) --> (1,2)
15: (1,1,1,1) --> (1)
Row n has
A334028(n) distinct elements.
Rows are ranked by
A373948 (standard order).
A003242 counts run-compressed compositions, i.e., anti-runs, ranks
A333489.
A007947 (squarefree kernel) represents run-compression of multisets.
A066099 lists the parts of compositions in standard order.
A116861 counts partitions by sum of run-compression.
A373949 counts compositions by sum of run-compression, opposite
A373951.
Cf.
A000120,
A070939,
A106356,
A124762,
A233564,
A238130,
A238343,
A272919,
A333381,
A333382,
A333627,
A373954,
A374250.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[First/@Split[stc[n]],{n,100}]
A376305
Run-compression of the sequence of first differences of squarefree numbers.
Original entry on oeis.org
1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3
Offset: 1
The sequence of squarefree numbers (A005117) is:
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
The run-compression is A376305 (this sequence).
This is the run-compression of first differences of
A005117.
For prime instead of squarefree numbers we have
A037201, halved
A373947.
For run-lengths instead of compression we have
A376306.
For run-sums instead of compression we have
A376307.
For prime-powers instead of squarefree numbers we have
A376308.
For positions of first appearances instead of compression we have
A376311.
The version for nonsquarefree numbers is
A376312.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A007674,
A053797,
A053806,
A061398,
A072284,
A112925,
A112926,
A120992,
A274174,
A373197,
A373198,
A375707,
A375708.
A376312
Run-compression of first differences (A078147) of nonsquarefree numbers (A013929).
Original entry on oeis.org
4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 4, 1, 3, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 2, 1, 3, 4, 2, 4, 1, 2, 1, 3, 1, 4, 1, 3, 4, 2, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 3, 2, 4, 1, 3, 4, 2, 3, 1, 3, 1, 4, 1, 3, 2, 1, 3, 4, 2
Offset: 1
The sequence of nonsquarefree numbers (A013929) is:
4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
(4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
and run-compression (A376312):
4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, ...
For nonprime instead of squarefree numbers we have
A037201, halved
A373947.
For run-sums instead of compression we have
A376264.
For squarefree instead of nonsquarefree we have
A376305, ones
A376342.
For prime-powers instead of nonsquarefree numbers we have
A376308.
A116861 counts partitions by compressed sum, by compressed length
A116608.
Cf.
A007674,
A053797,
A053806,
A072284,
A112925,
A120992,
A274174,
A373198,
A375707,
A376306,
A376307,
A376311.
A376308
Run-compression of the sequence of first differences of prime-powers.
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 2, 4, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 4, 2, 6, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 4, 2, 4, 6, 2, 8, 5, 1, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 4, 2, 4, 6, 2, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1
The sequence of prime-powers (A246655) is:
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, ...
The sequence of first differences (A057820) of prime-powers is:
1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, ...
The run-compression is A376308 (this sequence).
For squarefree numbers instead of prime-powers we have
A376305.
For run-lengths instead of compression we have
A376309.
For run-sums instead of compression we have
A376310.
A116861 counts partitions by compressed sum, by compressed length
A116608.
A373948 encodes compression using compositions in standard order.
Cf.
A001597,
A006549,
A007916,
A025475,
A034296,
A053289,
A076259,
A110969,
A120430,
A124767,
A174965,
A374251.
Showing 1-10 of 14 results.
Comments