cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A335322 Triangle read by rows: T(n, k) = binomial(n, floor((n+k+1)/2)) with k <= n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 10, 5, 5, 1, 1, 15, 15, 6, 6, 1, 1, 35, 21, 21, 7, 7, 1, 1, 56, 56, 28, 28, 8, 8, 1, 1, 126, 84, 84, 36, 36, 9, 9, 1, 1, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1, 792, 792, 495, 495, 220, 220, 66, 66, 12, 12, 1, 1
Offset: 1

Views

Author

Stefano Spezia, May 31 2020

Keywords

Comments

T(n, k) is a tight upper bound of the cardinality of an intersecting Sperner family or antichain of the set {1, 2,..., n}, where every collection of pairwise independent subsets is characterized by an intersection of cardinality at least k (see Theorem 1.3 in Wong and Tay).
Equals A061554 with the first row of the array (resp. the first column of the triangle) removed. - Georg Fischer, Jul 26 2023

Examples

			The triangle T(n, k) begins
n\k|  1   2   3   4   5   6   7   8
---+-------------------------------
1  |  1
2  |  1   1
3  |  3   1   1
4  |  4   4   1   1
5  | 10   5   5   1   1
6  | 15  15   6   6   1   1
7  | 35  21  21   7   7   1   1
8  | 56  56  28  28   8   8   1   1
...
		

Crossrefs

Cf. A037951 (k=3), A037952 (k=1), A037953 (k=5), A037954 (k=7), A037955 (k=2), A037956 (k=4), A037957 (k=6), A037958 (k=8), A045621 (row sums).

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n,Floor[(n+k+1)/2]]; Table[T[n,k],{n,12},{k,n}]//Flatten
  • PARI
    T(n, k) = binomial(n, (n+k+1)\2);
    vector(10, n, vector(n, k, T(n, k))) \\ Michel Marcus, Jun 01 2020

Formula

T(n, k) = A007318(n, A004526(n+k+1)) with k <= n.

A382817 a(n) = number of primes among the partial sums of row n of Pascal's triangle (A007318).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 2, 2, 0, 2, 1, 3, 2, 3, 2, 3, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 0, 2, 7, 2, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 1, 1, 1, 1, 5, 3, 3, 2, 3, 2, 3, 3, 10, 0, 1, 0, 1, 0, 2, 2, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 0
Offset: 0

Views

Author

Clark Kimberling, Apr 07 2025

Keywords

Examples

			The numbers in A008949 (partial sums of Pascal's triangle) begin thus:
  1
  1    2
  1    3     4
  1    4     7     8
  1    5    11    15    16
  1    6    16    26    31    32
  1    7    22    42    57    63    64
Row n=4 includes exactly 2 primes, so a(4) = 2.
		

Crossrefs

Programs

  • Maple
    a:= n-> nops(select(isprime, ListTools[PartialSums]
                ([seq(binomial(n, k), k=0..n)]))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 07 2025
  • Mathematica
    t = Accumulate /@ Table[Binomial[n, i], {n, 0, 100}, {i, 0, n}]; (* A037955 *)
    Map[PrimeQ, t]; Table[Count[m[[n]], True], {n, 1, 100}]
  • PARI
    a(n) = my(v=vector(n+1, k, binomial(n,k-1))); #select(isprime, vector(#v, k, sum(i=1, k, v[i]))); \\ Michel Marcus, Apr 13 2025

Formula

a(n) = 0 <=> n in { A258483 }.
Previous Showing 11-12 of 12 results.