cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A386325 Primes without {0, 7} as digits.

Original entry on oeis.org

2, 3, 5, 11, 13, 19, 23, 29, 31, 41, 43, 53, 59, 61, 83, 89, 113, 131, 139, 149, 151, 163, 181, 191, 193, 199, 211, 223, 229, 233, 239, 241, 251, 263, 269, 281, 283, 293, 311, 313, 331, 349, 353, 359, 383, 389, 419, 421, 431, 433, 439, 443, 449, 461, 463, 491
Offset: 1

Views

Author

Jason Bard, Jul 19 2025

Keywords

Crossrefs

Intersection of A038615 and A038618.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 3, 4, 5, 6, 8, 9]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 0] == 0 && DigitCount[#, 10, 7] == 0 &]
  • PARI
    primes_with(, 1, [1, 2, 3, 4, 5, 6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("12345689"), 41))) # uses function/imports in A385776
    

A386333 Primes without {1, 7} as digits.

Original entry on oeis.org

2, 3, 5, 23, 29, 43, 53, 59, 83, 89, 223, 229, 233, 239, 263, 269, 283, 293, 349, 353, 359, 383, 389, 409, 433, 439, 443, 449, 463, 499, 503, 509, 523, 563, 569, 593, 599, 643, 653, 659, 683, 809, 823, 829, 839, 853, 859, 863, 883, 929, 953, 983, 2003, 2029, 2039
Offset: 1

Views

Author

Jason Bard, Jul 19 2025

Keywords

Crossrefs

Intersection of A038603 and A038615.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 2, 3, 4, 5, 6, 8, 9]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 1] == 0 && DigitCount[#, 10, 7] == 0 &]
  • PARI
    primes_with(, 1, [0, 2, 3, 4, 5, 6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("02345689"), 41))) # uses function/imports in A385776
    

A386342 Primes without {3, 7} as digits.

Original entry on oeis.org

2, 5, 11, 19, 29, 41, 59, 61, 89, 101, 109, 149, 151, 181, 191, 199, 211, 229, 241, 251, 269, 281, 401, 409, 419, 421, 449, 461, 491, 499, 509, 521, 541, 569, 599, 601, 619, 641, 659, 661, 691, 809, 811, 821, 829, 859, 881, 911, 919, 929, 941, 991, 1009, 1019
Offset: 1

Views

Author

Jason Bard, Jul 20 2025

Keywords

Crossrefs

Intersection of A038611 and A038615.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 4, 5, 6, 8, 9]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 3] == 0 && DigitCount[#, 10, 7] == 0 &]
  • PARI
    primes_with(, 1, [0, 1, 2, 4, 5, 6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("01245689"), 41))) # uses function/imports in A385776
    

A386347 Primes without {4, 7} as digits.

Original entry on oeis.org

2, 3, 5, 11, 13, 19, 23, 29, 31, 53, 59, 61, 83, 89, 101, 103, 109, 113, 131, 139, 151, 163, 181, 191, 193, 199, 211, 223, 229, 233, 239, 251, 263, 269, 281, 283, 293, 311, 313, 331, 353, 359, 383, 389, 503, 509, 521, 523, 563, 569, 593, 599, 601, 613, 619, 631
Offset: 1

Views

Author

Jason Bard, Jul 20 2025

Keywords

Crossrefs

Intersection of A038612 and A038615.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 3, 5, 6, 8, 9]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 4] == 0 && DigitCount[#, 10, 7] == 0 &]
  • PARI
    primes_with(, 1, [0, 1, 2, 3, 5, 6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("01235689"), 41))) # uses function/imports in A385776
    

A386351 Primes without {5, 7} as digits.

Original entry on oeis.org

2, 3, 11, 13, 19, 23, 29, 31, 41, 43, 61, 83, 89, 101, 103, 109, 113, 131, 139, 149, 163, 181, 191, 193, 199, 211, 223, 229, 233, 239, 241, 263, 269, 281, 283, 293, 311, 313, 331, 349, 383, 389, 401, 409, 419, 421, 431, 433, 439, 443, 449, 461, 463, 491, 499
Offset: 1

Views

Author

Jason Bard, Jul 20 2025

Keywords

Crossrefs

Intersection of A038613 and A038615.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 3, 4, 6, 8, 9]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 5] == 0 && DigitCount[#, 10, 7] == 0 &]
  • PARI
    primes_with(, 1, [0, 1, 2, 3, 4, 6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("01234689"), 41))) # uses function/imports in A385776
    

A386354 Primes without {6, 7} as digits.

Original entry on oeis.org

2, 3, 5, 11, 13, 19, 23, 29, 31, 41, 43, 53, 59, 83, 89, 101, 103, 109, 113, 131, 139, 149, 151, 181, 191, 193, 199, 211, 223, 229, 233, 239, 241, 251, 281, 283, 293, 311, 313, 331, 349, 353, 359, 383, 389, 401, 409, 419, 421, 431, 433, 439, 443, 449, 491, 499
Offset: 1

Views

Author

Jason Bard, Jul 20 2025

Keywords

Crossrefs

Intersection of A038614 and A038615.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 3, 4, 5, 8, 9]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 6] == 0 && DigitCount[#, 10, 7] == 0 &]
  • PARI
    primes_with(, 1, [0, 1, 2, 3, 4, 5, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("01234589"), 41))) # uses function/imports in A385776
    

A386357 Primes without {7, 8} as digits.

Original entry on oeis.org

2, 3, 5, 11, 13, 19, 23, 29, 31, 41, 43, 53, 59, 61, 101, 103, 109, 113, 131, 139, 149, 151, 163, 191, 193, 199, 211, 223, 229, 233, 239, 241, 251, 263, 269, 293, 311, 313, 331, 349, 353, 359, 401, 409, 419, 421, 431, 433, 439, 443, 449, 461, 463, 491, 499, 503
Offset: 1

Views

Author

Jason Bard, Jul 20 2025

Keywords

Crossrefs

Intersection of A038615 and A038616.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 3, 4, 5, 6, 9]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 7] == 0 && DigitCount[#, 10, 8] == 0 &]
  • PARI
    primes_with(, 1, [0, 1, 2, 3, 4, 5, 6, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("01234569"), 41))) # uses function/imports in A385776
    

A154941 Sophie Germain primes in A154939.

Original entry on oeis.org

3, 5, 11, 131, 419, 1409, 2069, 3449, 3761, 3911, 6899, 7079, 7151, 9539, 9791, 10529, 10691, 11321, 11831, 14741, 15269, 17291, 22079, 27281, 27809, 30449, 34439, 45131, 48479, 52289, 54251, 64439, 70901, 75389, 78839, 85691, 101411, 102911
Offset: 1

Views

Author

Keywords

Comments

2*3+1=7, 5*2+1=11, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*(p+1)-p]&&PrimeQ[(p-1)*(p+1)+p],If[PrimeQ[p*2+1],AppendTo[lst,p]]],{n,8!}];lst
    Select[Prime[Range[10000]],AllTrue[{2#+1,(#-1)(#+1)+#,(#-1)(#+1)-#},PrimeQ]&] (* Harvey P. Dale, Sep 21 2023 *)

A154944 Primes p such that (p-1)*p*(p+1)-p+2 and (p-1)*p*(p+1)+p-2 are primes.

Original entry on oeis.org

19, 37, 67, 151, 367, 859, 1471, 2791, 2971, 3061, 4357, 4447, 4507, 6367, 7159, 7237, 7591, 8311, 8647, 11617, 12211, 12601, 13249, 14947, 15271, 15661, 16699, 18097, 19777, 20149, 20347, 20947, 21019, 22741, 23311, 23857, 24019, 25867, 26701
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)*p*(p+1)-p+2]&&PrimeQ[(p-1)*p*(p+1)+p-2],AppendTo[lst,p]],{n,8!}];lst

A155010 Primes p such that (p-a)*(p+a)-+a*p and (p-b)*(p+b)-+b*p are primes, a=2,b=3.

Original entry on oeis.org

7, 37, 587, 28703, 35677, 36857, 99367, 326707, 361687, 578167, 613573, 619007, 656407, 688783, 702203, 713467, 874823, 922027, 940573, 1045763, 1057907, 1244687, 1371157, 1419697, 1555187, 1665767, 1687187, 1687327, 1799453
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-2)*(p+2)-2*p]&&PrimeQ[(p-2)*(p+2)+2*p]&&PrimeQ[(p-3)*(p+3)-3*p]&&PrimeQ[(p-3)*(p+3)+3*p],AppendTo[lst,p]],{n,9!}];lst
    Select[Prime[Range[200000]],AllTrue[Flatten[{(#-2)(#+2)+{2#,-2#},(#-3)(#+3)+ {3#,-3#}}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 26 2015 *)
Previous Showing 21-30 of 30 results.