A330032
The number of chains of strictly rooted upper triangular or lower triangular matrices of order n.
Original entry on oeis.org
1, 2, 26, 9366, 204495126, 460566381955706, 162249649997008147763642, 12595124129900132067036747870669270, 288398561903310939256721956218813835167026180310, 2510964964470962082968627390938311899485883615067802615950711482
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..28
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1) (1991), 23-31.
- M. Tărnăuceanu, The number of chains of subgroups of a finite elementary abelian p-group, arXiv preprint arXiv:1506.08298 [math.GR], 2015.
Missing term a(6) = 162249649997008147763642 inserted by
Georg Fischer, Jul 15 2024
A329712
The number of rooted chains in the lattice of (0, 1) matrices of order n.
Original entry on oeis.org
1, 2, 150, 14174522, 10631309363962710, 213394730876951551651166996282, 288398561903310939256721956218813835167026180310, 55313586130829865212025793302979452922870356482030868613037427298852922
Offset: 0
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- V. Murali and B. Makamba, Finite Fuzzy Sets, Int. J. Gen. Syst., Vol. 34 (1) (2005), pp. 61-75.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1) (1991), 23-31.
- M. Tărnăuceanu, The number of chains of subgroups of a finite elementary abelian p-group, arXiv preprint arXiv:1506.08298 [math.GR], 2015.
A329911
The number of rooted chains of reflexive matrices of order n.
Original entry on oeis.org
1, 1, 6, 9366, 56183135190, 5355375592488768406230, 22807137588023760967484928392369803926, 9821625950779149908637519199878777711089567893389821437206
Offset: 0
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- V. Murali, Combinatorics of counting finite fuzzy subsets, Fuzzy Sets Syst., 157(17)(2006), 2403-2411.
- M. Tărnăuceanu, The number of chains of subgroups of a finite elementary abelian p-group, arXiv preprint arXiv:1506.08298 [math.GR], 2015.
Comments