A134141 Generalized unsigned Stirling1 triangle, S1p(7).
1, 7, 1, 56, 21, 1, 504, 371, 42, 1, 5040, 6440, 1295, 70, 1, 55440, 114520, 36225, 3325, 105, 1, 665280, 2116800, 983920, 135975, 7105, 147, 1, 8648640, 40884480, 26714800, 5199145, 398860, 13426, 196, 1, 121080960, 826338240, 735469280
Offset: 1
Examples
{1}; {7,1}; {56,21,1}; {504,371,42,1}; ... E.g. Row polynomial E(3,x)=56*x+21*x^2+x^3. a(4,2)= 371 = 4*(7*8)+3*(7*7) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*7*8)=56 colored versions, e.g., ((1c1),(2c1,3c7,4c5)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 7 colors, c1..c7, can be chosen and the vertex labeled 4 with j=2 can come in 8 colors, e.g., c1..c8. Therefore there are 4*((1)*(1*7*8))=224 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*7)*(1*7))=147 such forests, e.g. ((1c1,3c4)(2c1,4c7)) or ((1c1,3c6)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 05 2007
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First ten rows.
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> (n+6)!/6!, 9); # Peter Luschny, Jan 27 2016
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = (6*m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 39]] (* _Jean-François Alcover, Jun 01 2011, after formula *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; M = BellMatrix[(# + 6)!/6! &, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: factorial(n+6)/factorial(6), 10) # Peter Luschny, Jan 18 2016
Formula
a(n, m) = n!*A132166(n, m)/(m!*6^(n-m)); a(n, m) = (6*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
A048176 Generalized Stirling number triangle of first kind.
1, -10, 1, 200, -30, 1, -6000, 1100, -60, 1, 240000, -50000, 3500, -100, 1, -12000000, 2740000, -225000, 8500, -150, 1, 720000000, -176400000, 16240000, -735000, 17500, -210, 1, -50400000000, 13068000000, -1313200000, 67690000, -1960000, 32200, -280, 1, 4032000000000, -1095840000000
Offset: 1
Comments
a(n,m)= R_n^m(a=0,b=10) in the notation of the given reference.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n) = product(x-10*j,j=0..n-1), n >= 1, E(0,x) := 1, are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
Also the Bell transform of the sequence (-1)^n*A051262(n) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
Examples
{1}; {-10,1}; {200,-30,1}; {-6000,1100,-60,1}; ... E(3,x) = 200*x-30*x^2+x^3.
References
- Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> (-1)^n*n!*10^n, 9); # Peter Luschny, Jan 28 2016
-
Mathematica
rows = 9; t = Table[(-1)^n*n!*10^n, {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
Formula
a(n, m) = a(n-1, m-1) - 10*(n-1)*a(n-1, m), n >= m >= 1; a(n, m) := 0, n
A049411 Triangle read by rows, the Bell transform of n!*binomial(5,n) (without column 0).
1, 5, 1, 20, 15, 1, 60, 155, 30, 1, 120, 1300, 575, 50, 1, 120, 9220, 8775, 1525, 75, 1, 0, 55440, 114520, 36225, 3325, 105, 1, 0, 277200, 1315160, 730345, 112700, 6370, 140, 1, 0, 1108800, 13428800, 13000680, 3209745, 291060, 11130, 180, 1, 0, 3326400
Offset: 1
Comments
Previous name was: A triangle of numbers related to triangle A049327.
a(n,1) = A008279(5,n-1). a(n,m) =: S1(-5; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A013988(n,m).
The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
Examples
Row polynomial E(3,x) = 20*x + 15*x^2 + x^3. Triangle starts: { 1} { 5, 1} { 20, 15, 1} { 60, 155, 30, 1} {120, 1300, 575, 50, 1}
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
Programs
-
Mathematica
rows = 10; a[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Sage
# uses[bell_matrix from A264428] # Adds 1,0,0,0,... as column 0 at the left side of the triangle. bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
Formula
a(n, m) = n!*A049327(n, m)/(m!*6^(n-m));
a(n, m) = (6*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: (((-1+(1+x)^6)/6)^m)/m!.
Extensions
New name from Peter Luschny, Jan 16 2016
A049424 Triangle read by rows, the Bell transform of n!*binomial(4,n) (without column 0).
1, 4, 1, 12, 12, 1, 24, 96, 24, 1, 24, 600, 360, 40, 1, 0, 3024, 4200, 960, 60, 1, 0, 12096, 40824, 17640, 2100, 84, 1, 0, 36288, 338688, 270144, 55440, 4032, 112, 1, 0, 72576, 2407104, 3580416, 1212624, 144144, 7056, 144, 1, 0, 72576, 14515200, 41791680
Offset: 1
Comments
Previous name was: A triangle of numbers related to triangle A049326.
a(n,1) = A008279(4,n-1). a(n,m) =: S1(-4; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A011801(n,m). The monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m, E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
Examples
E.g., row polynomial E(3,x) = 12*x + 12*x^2 + x^3. Triangle starts: 1; 4, 1; 12, 12, 1; 24, 96, 24, 1; 24, 600, 360, 40, 1;
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
Programs
-
Mathematica
rows = 10; a[n_, m_] := BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Sage
# uses[bell_matrix from A264428] # Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle. bell_matrix(lambda n: factorial(n)*binomial(2, n), 8) # Peter Luschny, Jan 16 2016
Formula
a(n, m) = n!*A049326(n, m)/(m!*5^(n-m));
a(n, m) = (5*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: (((-1+(1+x)^5)/5)^m)/m!.
Extensions
New name from Peter Luschny, Jan 16 2016
A051231 Generalized Stirling number triangle of the first kind.
1, -9, 1, 162, -27, 1, -4374, 891, -54, 1, 157464, -36450, 2835, -90, 1, -7085880, 1797714, -164025, 6885, -135, 1, 382637520, -104162436, 10655064, -535815, 14175, -189, 1, -24106163760, 6944870988, -775431468, 44411409, -1428840, 26082, -252, 1
Offset: 1
Comments
T(n,m) = R_n^m(a=0, b=9) in the notation of the given 1962 reference.
T(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} T(n,m)*x^m = Product_{j=0..n-1} (x - 9*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
From Petros Hadjicostas, Jun 06 2020: (Start)
For nonnegative integers n, m and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) using slightly different notation. They were further examined by Mitrinovic and Mitrinovic (1962). Special cases were tabulated in this and other related papers.
Special cases of these numbers are related to numbers introduced by Nörlund (1924).
These numbers are defined via the g.f. Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0. As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_1^0(a,b) = a, R_1^1(a,b) = 1, and R_n^m(a,b) = 0 for n < m. (Because an empty product is by definition 1, we may let R_0^0(a,b) = 1.)
With a = 0 and b = 1, we get the Stirling numbers of the first kind S1(n,m) = R_n^m(a=0, b=1) = A048994(n,m) which satisfy Product_{r=0}^{n-1} (x - r) = Sum_{m=0..n} S1(n,m)*x^m with S1(n,n) = 1 for n >= 0, S1(n,0) = 0 for n >= 1, and S1(n, m) = 0 for m > n. (Array A008275 is the same as array A048994 but with no zero row and no zero column.)
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current array, T(n,m) = R_n^m(a=0, b=9) but with no zero row or column. (End)
Examples
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins: 1; -9, 1; 162, -27, 1; -4374, 891, -54, 1; 157464, -36450, 2835, -90, 1; -7085880, 1797714, -164025, 6885, -135, 1; ... 3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x-9*j) = 162*x - 27*x^2 + x^3. [Edited by _Petros Hadjicostas_, Jun 06 2020]
Links
- D. S. Mitrinovic, Sur une relation de récurrence relative aux nombres de Bernoulli, Comptes rendus de l'Académie des sciences de Paris, t. 250 (1960), 4266-4267.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les polynômes de Stirling, Bulletin de la Société des mathématiciens et physiciens de la R. P. de Serbie, t. 10 (1958), 43-49.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieux, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling. V, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 132/142 (1965), 1-22.
- Niels Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
- Wikipedia, Dragoslav Mitrinovic.
Crossrefs
Formula
T(n, m) = T(n-1, m-1) - 9*(n-1)*T(n-1, m), n >= m >= 1; T(n, m) := 0, n < m; T(n, 0) := 0 for n >= 1; T(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 9*x)/9)^m/m!.
From Petros Hadjicostas, Jun 07 2020: (Start)
Bivariate e.g.f.-o.g.f.: Sum_{n,m >= 1} T(n,m)*x^n*y^m/n! = exp((y/9)*log(1 + 9*x)) - 1 = (1 + 9*x)^(y/9) - 1. (End)
A194938 Triangle read by rows: coefficients of polynomials p(x,n) defined by 1/(1-t-t^2)^x = Sum_{n=1..oo} p(x,n)*t^n/n!.
1, 0, 1, 0, 3, 1, 0, 8, 9, 1, 0, 42, 59, 18, 1, 0, 264, 450, 215, 30, 1, 0, 2160, 4114, 2475, 565, 45, 1, 0, 20880, 43512, 30814, 9345, 1225, 63, 1, 0, 236880, 528492, 420756, 154609, 27720, 2338, 84, 1, 0, 3064320, 7235568, 6316316, 2673972, 594489, 69552
Offset: 1
Comments
A039692 is a similar triangle but without the leading column.
1/(1-t-t^2) is the g.f. for the Fibonacci numbers (A000045).
Row sums: A005442(n-1).
Also the Bell transform of n!*(F(n)+F(n+2)), F(n) the Fibonacci numbers. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
Examples
Triangle begins 1; 0, 1; 0, 3, 1; 0, 8, 9, 1; 0, 42, 59, 18, 1; 0, 264, 450, 215, 30, 1; 0, 2160, 4114, 2475, 565, 45, 1; 0, 20880, 43512, 30814, 9345, 1225, 63, 1; 0, 236880, 528492, 420756, 154609, 27720, 2338, 84, 1; 0, 3064320, 7235568, 6316316, 2673972, 594489, 69552, 4074, 108, 1; 0, 44634240, 110499696, 103889700, 49087520, 12803175, 1887753, 154350,6630,135,1;
References
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150
Programs
-
Maple
# The function BellMatrix is defined in A264428. with(combinat): g := n -> factorial(n)*(fibonacci(n)+fibonacci(n+2)): BellMatrix(g, 10); # Peter Luschny, Jan 21 2016
-
Mathematica
p[t_] = 1/(1 - t - t^2)^x; Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Second program *) BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[Function[n, n!*(Fibonacci[n] + Fibonacci[n+2])], rows = 12]; Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
Sage
# uses[bell_matrix from A264428] bell_matrix(lambda n: factorial(n)*(fibonacci(n)+fibonacci(n+2)), 8) # Peter Luschny, Jan 21 2016
Extensions
Edited by N. J. A. Sloane, Aug 28 2011
Comments